» Articles » PMID: 32685608

Plasmon-Driven Hot Electron Transfer at Atomically Sharp Metal-Semiconductor Nanojunctions

Overview
Journal ACS Photonics
Date 2020 Jul 21
PMID 32685608
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Recent advances in guiding and localizing light at the nanoscale exposed the enormous potential of ultrascaled plasmonic devices. In this context, the decay of surface plasmons to hot carriers triggers a variety of applications in boosting the efficiency of energy-harvesting, photocatalysis, and photodetection. However, a detailed understanding of plasmonic hot carrier generation and, particularly, the transfer at metal-semiconductor interfaces is still elusive. In this paper, we introduce a monolithic metal-semiconductor (Al-Ge) heterostructure device, providing a platform to examine surface plasmon decay and hot electron transfer at an atomically sharp Schottky nanojunction. The gated metal-semiconductor heterojunction device features electrostatic control of the Schottky barrier height at the Al-Ge interface, enabling hot electron filtering. The ability of momentum matching and to control the energy distribution of plasmon-driven hot electron injection is demonstrated by controlling the interband electron transfer in Ge, leading to negative differential resistance.

Citing Articles

Understanding the Electronic Transport of Al-Si and Al-Ge Nanojunctions by Exploiting Temperature-Dependent Bias Spectroscopy.

Behrle R, Murphey C, Cahoon J, Barth S, den Hertog M, Weber W ACS Appl Mater Interfaces. 2024; 16(15):19350-19358.

PMID: 38563742 PMC: 11040577. DOI: 10.1021/acsami.3c18674.


Monolithic and Single-Crystalline Aluminum-Silicon Heterostructures.

Wind L, Bockle R, Sistani M, Schweizer P, Maeder X, Michler J ACS Appl Mater Interfaces. 2022; 14(22):26238-26244.

PMID: 35621308 PMC: 9185687. DOI: 10.1021/acsami.2c04599.


Polarity Control in Ge Nanowires by Electronic Surface Doping.

Sistani M, Staudinger P, Lugstein A J Phys Chem C Nanomater Interfaces. 2020; 124(36):19858-19863.

PMID: 32952775 PMC: 7497402. DOI: 10.1021/acs.jpcc.0c05749.

References
1.
Chalabi H, Brongersma M . Plasmonics: Harvest season for hot electrons. Nat Nanotechnol. 2013; 8(4):229-30. DOI: 10.1038/nnano.2013.49. View

2.
Ozbay E . Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006; 311(5758):189-93. DOI: 10.1126/science.1114849. View

3.
Sundararaman R, Narang P, Jermyn A, Goddard 3rd W, Atwater H . Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat Commun. 2014; 5:5788. PMC: 4284641. DOI: 10.1038/ncomms6788. View

4.
Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N . Plasmon Waveguiding in Nanowires. Chem Rev. 2018; 118(6):2882-2926. DOI: 10.1021/acs.chemrev.7b00441. View

5.
Zheng B, Zhao H, Manjavacas A, McClain M, Nordlander P, Halas N . Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun. 2015; 6:7797. PMC: 4510964. DOI: 10.1038/ncomms8797. View