» Articles » PMID: 32680967

Cavity Molecular Dynamics Simulations of Liquid Water Under Vibrational Ultrastrong Coupling

Overview
Specialty Science
Date 2020 Jul 19
PMID 32680967
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

We simulate vibrational strong coupling (VSC) and vibrational ultrastrong coupling (V-USC) for liquid water with classical molecular dynamics simulations. When the cavity modes are resonantly coupled to the O-H stretch mode of liquid water, the infrared spectrum shows asymmetric Rabi splitting. The lower polariton (LP) may be suppressed or enhanced relative to the upper polariton (UP) depending on the frequency of the cavity mode. Moreover, although the static properties and the translational diffusion of water are not changed under VSC or V-USC, we do find the modification of the orientational autocorrelation function of HO molecules especially under V-USC, which could play a role in ground-state chemistry.

Citing Articles

Investigating the collective nature of cavity-modified chemical kinetics under vibrational strong coupling.

Lindoy L, Mandal A, Reichman D Nanophotonics. 2024; 13(14):2617-2633.

PMID: 39678666 PMC: 11636483. DOI: 10.1515/nanoph-2024-0026.


Spatially Resolved Near Field Spectroscopy of Vibrational Polaritons at the Small N Limit.

Hirschmann O, Bhakta H, Kort-Kamp W, Jones A, Xiong W ACS Photonics. 2024; 11(7):2650-2658.

PMID: 39036063 PMC: 11258779. DOI: 10.1021/acsphotonics.4c00345.


Unraveling a Cavity-Induced Molecular Polarization Mechanism from Collective Vibrational Strong Coupling.

Sidler D, Schnappinger T, Obzhirov A, Ruggenthaler M, Kowalewski M, Rubio A J Phys Chem Lett. 2024; 15(19):5208-5214.

PMID: 38717382 PMC: 11103705. DOI: 10.1021/acs.jpclett.4c00913.


A Quantum Chemistry Approach to Linear Vibro-Polaritonic Infrared Spectra with Perturbative Electron-Photon Correlation.

Fischer E, Syska J, Saalfrank P J Phys Chem Lett. 2024; 15(8):2262-2269.

PMID: 38381036 PMC: 10910601. DOI: 10.1021/acs.jpclett.4c00105.


Machine Learning for Polaritonic Chemistry: Accessing Chemical Kinetics.

Schafer C, Fojt J, Lindgren E, Erhart P J Am Chem Soc. 2024; 146(8):5402-5413.

PMID: 38354223 PMC: 10910569. DOI: 10.1021/jacs.3c12829.


References
1.
Vergauwe R, Thomas A, Nagarajan K, Shalabney A, George J, Chervy T . Modification of Enzyme Activity by Vibrational Strong Coupling of Water. Angew Chem Int Ed Engl. 2019; 58(43):15324-15328. PMC: 6856831. DOI: 10.1002/anie.201908876. View

2.
Miller T, Manolopoulos D . Quantum diffusion in liquid water from ring polymer molecular dynamics. J Chem Phys. 2005; 123(15):154504. DOI: 10.1063/1.2074967. View

3.
Campos-Gonzalez-Angulo J, Ribeiro R, Yuen-Zhou J . Resonant catalysis of thermally activated chemical reactions with vibrational polaritons. Nat Commun. 2019; 10(1):4685. PMC: 6794294. DOI: 10.1038/s41467-019-12636-1. View

4.
Flick J, Ruggenthaler M, Appel H, Rubio A . Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc Natl Acad Sci U S A. 2017; 114(12):3026-3034. PMC: 5373338. DOI: 10.1073/pnas.1615509114. View

5.
Campos-Gonzalez-Angulo J, Yuen-Zhou J . Polaritonic normal modes in transition state theory. J Chem Phys. 2020; 152(16):161101. DOI: 10.1063/5.0007547. View