» Articles » PMID: 32675376

CRISPR-CasΦ from Huge Phages is a Hypercompact Genome Editor

Overview
Journal Science
Specialty Science
Date 2020 Jul 18
PMID 32675376
Citations 227
Authors
Affiliations
Soon will be listed here.
Abstract

CRISPR-Cas systems are found widely in prokaryotes, where they provide adaptive immunity against virus infection and plasmid transformation. We describe a minimal functional CRISPR-Cas system, comprising a single ~70-kilodalton protein, CasΦ, and a CRISPR array, encoded exclusively in the genomes of huge bacteriophages. CasΦ uses a single active site for both CRISPR RNA (crRNA) processing and crRNA-guided DNA cutting to target foreign nucleic acids. This hypercompact system is active in vitro and in human and plant cells with expanded target recognition capabilities relative to other CRISPR-Cas proteins. Useful for genome editing and DNA detection but with a molecular weight half that of Cas9 and Cas12a genome-editing enzymes, CasΦ offers advantages for cellular delivery that expand the genome editing toolbox.

Citing Articles

Efforts to Downsize Base Editors for Clinical Applications.

Song B Int J Mol Sci. 2025; 26(5).

PMID: 40076976 PMC: 11900391. DOI: 10.3390/ijms26052357.


CRISPR-mediated genome editing of wheat for enhancing disease resistance.

Waites J, Achary V, Syombua E, Hearne S, Bandyopadhyay A Front Genome Ed. 2025; 7:1542487.

PMID: 40070798 PMC: 11893844. DOI: 10.3389/fgeed.2025.1542487.


CRISPR-Cas applications in agriculture and plant research.

Tuncel A, Pan C, Clem J, Liu D, Qi Y Nat Rev Mol Cell Biol. 2025; .

PMID: 40055491 DOI: 10.1038/s41580-025-00834-3.


SynBioNanoDesign: pioneering targeted drug delivery with engineered nanomaterials.

Cai Q, Guo R, Chen D, Deng Z, Gao J J Nanobiotechnology. 2025; 23(1):178.

PMID: 40050980 PMC: 11884119. DOI: 10.1186/s12951-025-03254-9.


Engineering of SauriCas9 with enhanced specificity.

Zhang X, Tao C, Li M, Zhang S, Liang P, Huang Y Mol Ther Nucleic Acids. 2025; 36(1):102455.

PMID: 40027883 PMC: 11869866. DOI: 10.1016/j.omtn.2025.102455.


References
1.
Swarts D, van der Oost J, Jinek M . Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a. Mol Cell. 2017; 66(2):221-233.e4. PMC: 6879319. DOI: 10.1016/j.molcel.2017.03.016. View

2.
Yan W, Hunnewell P, Alfonse L, Carte J, Keston-Smith E, Sothiselvam S . Functionally diverse type V CRISPR-Cas systems. Science. 2018; 363(6422):88-91. PMC: 11258546. DOI: 10.1126/science.aav7271. View

3.
Harrington L, Burstein D, Chen J, Paez-Espino D, Ma E, Witte I . Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018; 362(6416):839-842. PMC: 6659742. DOI: 10.1126/science.aav4294. View

4.
Lee M, Marx C . Repeated, selection-driven genome reduction of accessory genes in experimental populations. PLoS Genet. 2012; 8(5):e1002651. PMC: 3349727. DOI: 10.1371/journal.pgen.1002651. View

5.
Knott G, Doudna J . CRISPR-Cas guides the future of genetic engineering. Science. 2018; 361(6405):866-869. PMC: 6455913. DOI: 10.1126/science.aat5011. View