» Articles » PMID: 32674269

Innate Immune Sensing of Influenza A Virus

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2020 Jul 18
PMID 32674269
Citations 39
Authors
Affiliations
Soon will be listed here.
Abstract

Influenza virus infection triggers host innate immune response by stimulating various pattern recognition receptors (PRRs). Activation of these PRRs leads to the activation of a plethora of signaling pathways, resulting in the production of interferon (IFN) and proinflammatory cytokines, followed by the expression of interferon-stimulated genes (ISGs), the recruitment of innate immune cells, or the activation of programmed cell death. All these antiviral approaches collectively restrict viral replication inside the host. However, influenza virus also engages in multiple mechanisms to subvert the innate immune responses. In this review, we discuss the role of PRRs such as Toll-like receptors (TLRs), Retinoic acid-inducible gene I (RIG-I), NOD-, LRR-, pyrin domain-containing protein 3 (NLRP3), and Z-DNA binding protein 1 (ZBP1) in sensing and restricting influenza viral infection. Further, we also discuss the mechanisms influenza virus utilizes, especially the role of viral non-structure proteins NS1, PB1-F2, and PA-X, to evade the host innate immune responses.

Citing Articles

The Novel H10N3 Avian Influenza Virus Triggers Lethal Cytokine Storm by Activating Multiple Forms of Programmed Cell Death in Mammalian Lungs.

Wang X, Wang X, Hao X, Gao R, Lu X, Yang W Int J Mol Sci. 2025; 26(5).

PMID: 40076601 PMC: 11899735. DOI: 10.3390/ijms26051977.


Therapeutic Effects of Alkaloids on Influenza: A Systematic Review and Meta-Analysis of Preclinical Studies.

Gong Z, Hu M, Zhao G, Liang N, Zhang H, Li H Int J Mol Sci. 2025; 26(5).

PMID: 40076449 PMC: 11899224. DOI: 10.3390/ijms26051823.


Innate immune sensors and regulators at the blood brain barrier: focus on toll-like receptors and inflammasomes as mediators of neuro-immune crosstalk and inflammation.

Acioglu C, Elkabes S J Neuroinflammation. 2025; 22(1):39.

PMID: 39955600 PMC: 11829548. DOI: 10.1186/s12974-025-03360-3.


Association Between Diabetes Mellitus-Tuberculosis and the Generation of Drug Resistance.

Cornejo-Baez A, Zenteno-Cuevas R, Luna-Herrera J Microorganisms. 2025; 12(12.

PMID: 39770852 PMC: 11728438. DOI: 10.3390/microorganisms12122649.


Functional Involvement of Signal Transducers and Activators of Transcription in the Pathogenesis of Influenza A Virus.

Liu S, Qiu F, Gu R, Xu E Int J Mol Sci. 2025; 25(24.

PMID: 39769350 PMC: 11677356. DOI: 10.3390/ijms252413589.


References
1.
Liu G, Lu Y, Liu Q, Zhou Y . Inhibition of Ongoing Influenza A Virus Replication Reveals Different Mechanisms of RIG-I Activation. J Virol. 2019; 93(6). PMC: 6401434. DOI: 10.1128/JVI.02066-18. View

2.
Levene R, Gaglia M . Host Shutoff in Influenza A Virus: Many Means to an End. Viruses. 2018; 10(9). PMC: 6165434. DOI: 10.3390/v10090475. View

3.
Nemeroff M, Barabino S, Li Y, Keller W, KRUG R . Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3'end formation of cellular pre-mRNAs. Mol Cell. 1998; 1(7):991-1000. DOI: 10.1016/s1097-2765(00)80099-4. View

4.
Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M . A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016; 12(1):e1005410. PMC: 4731390. DOI: 10.1371/journal.ppat.1005410. View

5.
Zell R, Krumbholz A, Eitner A, Krieg R, Halbhuber K, Wutzler P . Prevalence of PB1-F2 of influenza A viruses. J Gen Virol. 2007; 88(Pt 2):536-546. DOI: 10.1099/vir.0.82378-0. View