» Articles » PMID: 32667366

Machine Learning Approach for Accurate Backmapping of Coarse-grained Models to All-atom Models

Overview
Specialty Chemistry
Date 2020 Jul 16
PMID 32667366
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Four different machine learning (ML) regression models: artificial neural network, k-nearest neighbors, Gaussian process regression and random forest were built to backmap coarse-grained models to all-atom models. The ML models showed better predictions than the existing backmapping approaches for selected structures, suggesting the applications of the ML models for backmapping.

Citing Articles

Generating Protein Structures for Pathway Discovery Using Deep Learning.

Georgouli K, Stephany R, Tempkin J, Santiago C, Aydin F, Heimann M J Chem Theory Comput. 2024; 20(20):8795-8806.

PMID: 39388723 PMC: 11500303. DOI: 10.1021/acs.jctc.4c00816.


Physics-Informed Deep Learning Approach for Reintroducing Atomic Detail in Coarse-Grained Configurations of Multiple Poly(lactic acid) Stereoisomers.

Christofi E, Bacova P, Harmandaris V J Chem Inf Model. 2024; 64(6):1853-1867.

PMID: 38427962 PMC: 10966642. DOI: 10.1021/acs.jcim.3c01870.


Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations.

Brown B, Stein R, Meiler J, Mchaourab H J Chem Theory Comput. 2024; 20(3):1434-1447.

PMID: 38215214 PMC: 10867840. DOI: 10.1021/acs.jctc.3c01081.


Approximating conformational Boltzmann distributions with AlphaFold2 predictions.

Brown B, Stein R, Meiler J, Mchaourab H bioRxiv. 2023; .

PMID: 37609301 PMC: 10441281. DOI: 10.1101/2023.08.06.552168.


Temporally Coherent Backmapping of Molecular Trajectories From Coarse-Grained to Atomistic Resolution.

Shmilovich K, Stieffenhofer M, Charron N, Hoffmann M J Phys Chem A. 2022; 126(48):9124-9139.

PMID: 36417670 PMC: 9743211. DOI: 10.1021/acs.jpca.2c07716.