Machine Learning Approach for Accurate Backmapping of Coarse-grained Models to All-atom Models
Overview
Authors
Affiliations
Four different machine learning (ML) regression models: artificial neural network, k-nearest neighbors, Gaussian process regression and random forest were built to backmap coarse-grained models to all-atom models. The ML models showed better predictions than the existing backmapping approaches for selected structures, suggesting the applications of the ML models for backmapping.
Generating Protein Structures for Pathway Discovery Using Deep Learning.
Georgouli K, Stephany R, Tempkin J, Santiago C, Aydin F, Heimann M J Chem Theory Comput. 2024; 20(20):8795-8806.
PMID: 39388723 PMC: 11500303. DOI: 10.1021/acs.jctc.4c00816.
Christofi E, Bacova P, Harmandaris V J Chem Inf Model. 2024; 64(6):1853-1867.
PMID: 38427962 PMC: 10966642. DOI: 10.1021/acs.jcim.3c01870.
Brown B, Stein R, Meiler J, Mchaourab H J Chem Theory Comput. 2024; 20(3):1434-1447.
PMID: 38215214 PMC: 10867840. DOI: 10.1021/acs.jctc.3c01081.
Approximating conformational Boltzmann distributions with AlphaFold2 predictions.
Brown B, Stein R, Meiler J, Mchaourab H bioRxiv. 2023; .
PMID: 37609301 PMC: 10441281. DOI: 10.1101/2023.08.06.552168.
Shmilovich K, Stieffenhofer M, Charron N, Hoffmann M J Phys Chem A. 2022; 126(48):9124-9139.
PMID: 36417670 PMC: 9743211. DOI: 10.1021/acs.jpca.2c07716.