Won S, Park D, Jung Y, Kim H, Chung T
Chem Sci. 2024; .
PMID: 39323515
PMC: 11420859.
DOI: 10.1039/d4sc04570j.
Surendran A, Pereverzev A, Roithova J
J Am Chem Soc. 2024; 146(22):15619-15626.
PMID: 38778765
PMC: 11157527.
DOI: 10.1021/jacs.4c04989.
Brachi M, Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher D
ACS Org Inorg Au. 2024; 4(2):141-187.
PMID: 38585515
PMC: 10995937.
DOI: 10.1021/acsorginorgau.3c00051.
Behera N, Rodrigo S, Hazra A, Maity R, Luo L
Curr Opin Electrochem. 2024; 43.
PMID: 38450312
PMC: 10914348.
DOI: 10.1016/j.coelec.2023.101439.
Atkins A, Chaturvedi A, Tate J, Lennox A
Org Chem Front. 2024; 11(3):802-808.
PMID: 38298566
PMC: 10825853.
DOI: 10.1039/d3qo01865b.
Bi-Catalyzed Trifluoromethylation of C(sp)-H Bonds under Light.
Tsuruta T, Spinnato D, Won Moon H, Leutzsch M, Cornella J
J Am Chem Soc. 2023; 145(47):25538-25544.
PMID: 37963280
PMC: 10690797.
DOI: 10.1021/jacs.3c10333.
Overcoming the Potential Window-Limited Functional Group Compatibility by Alternating Current Electrolysis.
Rodrigo S, Hazra A, Mahajan J, Nguyen H, Luo L
J Am Chem Soc. 2023; 145(40):21851-21859.
PMID: 37747918
PMC: 10774024.
DOI: 10.1021/jacs.3c05802.
Aqueous pulsed electrochemistry promotes C-N bond formation via a one-pot cascade approach.
He M, Wu Y, Li R, Wang Y, Liu C, Zhang B
Nat Commun. 2023; 14(1):5088.
PMID: 37607922
PMC: 10444869.
DOI: 10.1038/s41467-023-40892-9.
Recent Advances in C(sp)-C(sp) and C(sp)-C(sp) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses.
Claraz A, Masson G
ACS Org Inorg Au. 2023; 2(2):126-147.
PMID: 36855458
PMC: 9954344.
DOI: 10.1021/acsorginorgau.1c00037.
Biocatalytic synthesis of 2-fluoro-3-hydroxypropionic acid.
Liu W, Yuan S, Jin M, Xian M
Front Bioeng Biotechnol. 2022; 10:969012.
PMID: 36061447
PMC: 9428585.
DOI: 10.3389/fbioe.2022.969012.
Controlling One- or Two-Electron Oxidation for Selective Amine Functionalization by Alternating Current Frequency.
Gunasekera D, Mahajan J, Wanzi Y, Rodrigo S, Liu W, Tan T
J Am Chem Soc. 2022; 144(22):9874-9882.
PMID: 35622985
PMC: 9199481.
DOI: 10.1021/jacs.2c02605.
Chemoselective (Hetero)Arene Electroreduction Enabled by Rapid Alternating Polarity.
Hayashi K, Griffin J, Harper K, Kawamata Y, Baran P
J Am Chem Soc. 2022; 144(13):5762-5768.
PMID: 35347984
PMC: 9216236.
DOI: 10.1021/jacs.2c02102.
Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis.
Tay N, Lehnherr D, Rovis T
Chem Rev. 2021; 122(2):2487-2649.
PMID: 34751568
PMC: 10021920.
DOI: 10.1021/acs.chemrev.1c00384.
Chemoselective Electrosynthesis Using Rapid Alternating Polarity.
Kawamata Y, Hayashi K, Carlson E, Shaji S, Waldmann D, Simmons B
J Am Chem Soc. 2021; 143(40):16580-16588.
PMID: 34596395
PMC: 8711284.
DOI: 10.1021/jacs.1c06572.
Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor.
Rein J, Annand J, Wismer M, Fu J, Siu J, Klapars A
ACS Cent Sci. 2021; 7(8):1347-1355.
PMID: 34471679
PMC: 8393209.
DOI: 10.1021/acscentsci.1c00328.
Alternating Current Electrolysis as Efficient Tool for the Direct Electrochemical Oxidation of Hydroxamic Acids for Acyl Nitroso Diels-Alder Reactions.
Fahrmann J, Hilt G
Angew Chem Int Ed Engl. 2021; 60(37):20313-20317.
PMID: 34232547
PMC: 8456936.
DOI: 10.1002/anie.202107148.
Organic Electrochemistry: Molecular Syntheses with Potential.
Zhu C, Ang N, Meyer T, Qiu Y, Ackermann L
ACS Cent Sci. 2021; 7(3):415-431.
PMID: 33791425
PMC: 8006177.
DOI: 10.1021/acscentsci.0c01532.
Coupling of Alternating Current to Transition-Metal Catalysis: Examples of Nickel-Catalyzed Cross-Coupling.
Bortnikov E, Semenov S
J Org Chem. 2020; 86(1):782-793.
PMID: 33186048
PMC: 7783731.
DOI: 10.1021/acs.joc.0c02350.