» Articles » PMID: 32656393

Translational Toxicology in Zebrafish

Overview
Date 2020 Jul 14
PMID 32656393
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

A major goal of translational toxicology is to identify adverse chemical effects and determine whether they are conserved or divergent across experimental systems. Translational toxicology encompasses assessment of chemical toxicity across multiple life stages, determination of toxic mode-of-action, computational prediction modeling, and identification of interventions that protect or restore health following toxic chemical exposures. The zebrafish is increasingly used in translational toxicology because it combines the genetic and physiological advantages of mammalian models with the higher-throughput capabilities and genetic manipulability of invertebrate models. Here, we review recent literature demonstrating the power of the zebrafish as a model for addressing all four activities of translational toxicology. Important data gaps and challenges associated with using zebrafish for translational toxicology are also discussed.

Citing Articles

Developmental Toxicity and Cardiotoxicity of N, N-Dimethylaniline in Zebrafish Embryos.

Liu B, Peng B, Jin Y, Tao Y, Xu W, Zhang Y Toxics. 2025; 13(2).

PMID: 39997940 PMC: 11860635. DOI: 10.3390/toxics13020125.


Advancements in the Developmental Zebrafish Model for Predictive Human Toxicology.

Morshead M, Tanguay R Curr Opin Toxicol. 2025; 41.

PMID: 39897714 PMC: 11780918. DOI: 10.1016/j.cotox.2024.100516.


Developmental Toxicity and Apoptosis in Zebrafish: The Impact of Lithium Hexafluorophosphate (LiPF) from Lithium-Ion Battery Electrolytes.

Yang B, Sun L, Peng Z, Zhang Q, Lin M, Peng Z Int J Mol Sci. 2024; 25(17).

PMID: 39273255 PMC: 11395654. DOI: 10.3390/ijms25179307.


Seminar: Functional Exposomics and Mechanisms of Toxicity-Insights from Model Systems and NAMs.

Lai Y, Ay M, Hospital C, Miller G, Sarkar S Environ Health Perspect. 2024; 132(9):94201.

PMID: 39230330 PMC: 11373422. DOI: 10.1289/EHP13120.


Comparative Study of Condensed and Hydrolysable Tannins during the Early Stages of Zebrafish Development.

La Pietra A, Imperatore R, Coccia E, Mobilio T, Ferrandino I, Paolucci M Int J Mol Sci. 2024; 25(13).

PMID: 39000172 PMC: 11241311. DOI: 10.3390/ijms25137063.


References
1.
Ward R, Ali Z, Slater K, Reynolds A, Jensen L, Kennedy B . Pharmacological restoration of visual function in a zebrafish model of von-Hippel Lindau disease. Dev Biol. 2019; 457(2):226-234. DOI: 10.1016/j.ydbio.2019.02.008. View

2.
Aluru N . Epigenetic effects of environmental chemicals: insights from zebrafish. Curr Opin Toxicol. 2017; 6:26-33. PMC: 5703436. DOI: 10.1016/j.cotox.2017.07.004. View

3.
Lam P, Kutchukian P, Anand R, Imbriglio J, Andrews C, Padilla H . Cyp1 Inhibition Prevents Doxorubicin-Induced Cardiomyopathy in a Zebrafish Heart-Failure Model. Chembiochem. 2020; 21(13):1905-1910. PMC: 7500981. DOI: 10.1002/cbic.201900741. View

4.
Aluru N, Karchner S, Glazer L . Early Life Exposure to Low Levels of AHR Agonist PCB126 (3,3',4,4',5-Pentachlorobiphenyl) Reprograms Gene Expression in Adult Brain. Toxicol Sci. 2017; 160(2):386-397. PMC: 5837202. DOI: 10.1093/toxsci/kfx192. View

5.
Hofsteen P, Plavicki J, Johnson S, Peterson R, Heideman W . Sox9b is required for epicardium formation and plays a role in TCDD-induced heart malformation in zebrafish. Mol Pharmacol. 2013; 84(3):353-60. PMC: 3876814. DOI: 10.1124/mol.113.086413. View