» Articles » PMID: 32641692

Unveiling Hydrocerussite As an Electrochemically Stable Active Phase for Efficient Carbon Dioxide Electroreduction to Formate

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jul 10
PMID 32641692
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

For most metal-containing CO reduction reaction (CORR) electrocatalysts, the unavoidable self-reduction to zero-valence metal will promote hydrogen evolution, hence lowering the CORR selectivity. Thus it is challenging to design a stable phase with resistance to electrochemical self-reduction as well as high CORR activity. Herein, we report a scenario to develop hydrocerussite as a stable and active electrocatalyst via in situ conversion of a complex precursor, tannin-lead(II) (TA-Pb) complex. A comprehensive characterization reveals the in situ transformation of TA-Pb to cerussite (PbCO), and sequentially to hydrocerussite (Pb(CO)(OH)), which finally serves as a stable and active phase under CORR condition. Both experiments and theoretical calculations confirm the high activity and selectivity over hydrocerussite. This work not only offers a new approach of enhancing the selectivity in CORR by suppressing the self-reduction of electrode materials, but also provides a strategy for studying the reaction mechanism and active phases of electrocatalysts.

Citing Articles

Transformation of Tin Microparticles to Nanoparticles on Nanotextured Carbon Support Boosts the Efficiency of the Electrochemical CO Reduction.

Burwell T, Thangamuthu M, Besley E, Chen Y, Pyer J, Alves Fernandes J ACS Appl Energy Mater. 2025; 8(4):2281-2290.

PMID: 40018389 PMC: 11863182. DOI: 10.1021/acsaem.4c02830.


Synthesis of Lead(II) Carbonate-Containing Nanoparticles Using Ultrasonication or Microwave Irradiation.

Gamage M, Ho K, Kader M, Nguyen K, Velmurugan M, McBride-Gagyi S ACS Omega. 2024; 9(49):48802-48809.

PMID: 39676948 PMC: 11635499. DOI: 10.1021/acsomega.4c08839.


Electrifying HCOOH synthesis from CO building blocks over Cu-Bi nanorod arrays.

Zhang G, Tan B, Mok D, Liu H, Ni B, Zhao G Proc Natl Acad Sci U S A. 2024; 121(29):e2400898121.

PMID: 38980900 PMC: 11260142. DOI: 10.1073/pnas.2400898121.


Atomic Design of Copper Active Sites in Pristine Metal-Organic Coordination Compounds for Electrocatalytic Carbon Dioxide Reduction.

Wang J, Wa Q, Diao Q, Liu F, Hao F, Xiong Y Small Methods. 2024; 8(11):e2400432.

PMID: 38767183 PMC: 11579559. DOI: 10.1002/smtd.202400432.


Durable CO conversion in the proton-exchange membrane system.

Fang W, Guo W, Lu R, Yan Y, Liu X, Wu D Nature. 2024; 626(7997):86-91.

PMID: 38297172 DOI: 10.1038/s41586-023-06917-5.


References
1.
Liu Y, McCrory C . Modulating the mechanism of electrocatalytic CO reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat Commun. 2019; 10(1):1683. PMC: 6459859. DOI: 10.1038/s41467-019-09626-8. View

2.
Shi Y, Yu Y, Liang Y, Du Y, Zhang B . In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angew Chem Int Ed Engl. 2018; 58(12):3769-3773. DOI: 10.1002/anie.201811241. View

3.
Weng Z, Wu Y, Wang M, Jiang J, Yang K, Huo S . Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat Commun. 2018; 9(1):415. PMC: 5788987. DOI: 10.1038/s41467-018-02819-7. View

4.
Kresse , Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996; 54(16):11169-11186. DOI: 10.1103/physrevb.54.11169. View

5.
Han N, Wang Y, Yang H, Deng J, Wu J, Li Y . Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO reduction to formate. Nat Commun. 2018; 9(1):1320. PMC: 5882965. DOI: 10.1038/s41467-018-03712-z. View