» Articles » PMID: 32639717

Localized Excitons in NbSe-MoSe Heterostructures

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2020 Jul 9
PMID 32639717
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Neutral and charged excitons (trions) in atomically thin materials offer important capabilities for photonics, from ultrafast photodetectors to highly efficient light-emitting diodes and lasers. Recent studies of van der Waals (vdW) heterostructures comprised of dissimilar monolayer materials have uncovered a wealth of optical phenomena that are predominantly governed by interlayer interactions. Here, we examine the optical properties in NbSe-MoSe vdW heterostructures, which provide an important model system to study metal-semiconductor interfaces, a common element in optoelectronics. Through low-temperature photoluminescence (PL) microscopy, we discover a sharp emission feature, L1, that is localized at the NbSe-capped regions of MoSe. L1 is observed at energies below the commonly studied MoSe excitons and trions and exhibits temperature- and power-dependent PL consistent with exciton localization in a confining potential. This PL feature is robust, observed in a variety of samples fabricated with different stacking geometries and cleaning procedures. Using first-principles calculations, we reveal that the confinement potential required for exciton localization naturally arises from the in-plane band bending due to the changes in the electron affinity between pristine MoSe and NbSe-MoSe heterostructure. We discuss the implications of our studies for atomically thin optoelectronics devices with atomically sharp interfaces and tunable electronic structures.

Citing Articles

Carbon nanodot with highly localized excitonic emission for efficient luminescent solar concentrator.

Zang J, Jiao F, Wei J, Lou Q, Zheng G, Shen C Nanophotonics. 2024; 12(21):4117-4126.

PMID: 39635635 PMC: 11501919. DOI: 10.1515/nanoph-2023-0578.


Cryogenic nonlinear microscopy of high-Q metasurfaces coupled with transition metal dichalcogenide monolayers.

Nazarenko A, Chernyak A, Musorin A, Shorokhov A, Ding L, Valuckas V Nanophotonics. 2024; 13(18):3429-3436.

PMID: 39634819 PMC: 11501421. DOI: 10.1515/nanoph-2024-0182.


Incommensurate transition-metal dichalcogenides mechanochemical reshuffling of binary precursors.

Hlova I, Singh P, Malynych S, Gamernyk R, Dolotko O, Pecharsky V Nanoscale Adv. 2022; 3(14):4065-4071.

PMID: 36132842 PMC: 9417183. DOI: 10.1039/d1na00064k.


Carbon Nanodots with Nearly Unity Fluorescent Efficiency Realized via Localized Excitons.

Lou Q, Ni Q, Niu C, Wei J, Zhang Z, Shen W Adv Sci (Weinh). 2022; 9(30):e2203622.

PMID: 36002336 PMC: 9596859. DOI: 10.1002/advs.202203622.

References
1.
Guan J, Chuang H, Zhou Z, Tomanek D . Optimizing Charge Injection across Transition Metal Dichalcogenide Heterojunctions: Theory and Experiment. ACS Nano. 2017; 11(4):3904-3910. DOI: 10.1021/acsnano.7b00285. View

2.
Zhang N, Surrente A, Baranowski M, Maude D, Gant P, Castellanos-Gomez A . Moiré Intralayer Excitons in a MoSe/MoS Heterostructure. Nano Lett. 2018; 18(12):7651-7657. DOI: 10.1021/acs.nanolett.8b03266. View

3.
Dvir T, Massee F, Attias L, Khodas M, Aprili M, Quay C . Spectroscopy of bulk and few-layer superconducting NbSe with van der Waals tunnel junctions. Nat Commun. 2018; 9(1):598. PMC: 5807409. DOI: 10.1038/s41467-018-03000-w. View

4.
Chernikov A, Berkelbach T, Hill H, Rigosi A, Li Y, Aslan O . Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). Phys Rev Lett. 2014; 113(7):076802. DOI: 10.1103/PhysRevLett.113.076802. View

5.
Chen S, Goldstein T, Taniguchi T, Watanabe K, Yan J . Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor. Nat Commun. 2018; 9(1):3717. PMC: 6137189. DOI: 10.1038/s41467-018-05558-x. View