6.
Li X, Wang Y, Wang Z, Qi Y, Li L, Zhang P
. Composite PLA/PEG/nHA/Dexamethasone Scaffold Prepared by 3D Printing for Bone Regeneration. Macromol Biosci. 2018; 18(6):e1800068.
DOI: 10.1002/mabi.201800068.
View
7.
Reichert J, Wullschleger M, Cipitria A, Lienau J, Cheng T, Schutz M
. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop. 2010; 35(8):1229-36.
PMC: 3167439.
DOI: 10.1007/s00264-010-1146-x.
View
8.
Jain S, Fuoco T, Yassin M, Mustafa K, Finne-Wistrand A
. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Biomacromolecules. 2019; 21(2):388-396.
DOI: 10.1021/acs.biomac.9b01112.
View
9.
Benwood C, Anstey A, Andrzejewski J, Misra M, Mohanty A
. Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid). ACS Omega. 2019; 3(4):4400-4411.
PMC: 6641607.
DOI: 10.1021/acsomega.8b00129.
View
10.
Schliephake H, Weich H, Dullin C, Gruber R, Frahse S
. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid--an experimental study in rats. Biomaterials. 2007; 29(1):103-10.
DOI: 10.1016/j.biomaterials.2007.09.019.
View
11.
Tan G, Zhou Y
. Tunable 3D Nanofiber Architecture of Polycaprolactone by Divergence Electrospinning for Potential Tissue Engineering Applications. Nanomicro Lett. 2018; 10(4):73.
PMC: 6208785.
DOI: 10.1007/s40820-018-0226-0.
View
12.
Gremare A, Guduric V, Bareille R, Heroguez V, Latour S, LHeureux N
. Characterization of printed PLA scaffolds for bone tissue engineering. J Biomed Mater Res A. 2017; 106(4):887-894.
DOI: 10.1002/jbm.a.36289.
View
13.
Cutright D, Hunsuck E
. Tissue reaction to the biodegradable polylactic acid suture. Oral Surg Oral Med Oral Pathol. 1971; 31(1):134-9.
DOI: 10.1016/0030-4220(71)90044-2.
View
14.
Orciani M, Fini M, Di Primio R, Mattioli-Belmonte M
. Biofabrication and Bone Tissue Regeneration: Cell Source, Approaches, and Challenges. Front Bioeng Biotechnol. 2017; 5:17.
PMC: 5362636.
DOI: 10.3389/fbioe.2017.00017.
View
15.
Tschakaloff A, Losken H, von Oepen R, Michaeli W, MORITZ O, Mooney M
. Degradation kinetics of biodegradable DL-polylactic acid biodegradable implants depending on the site of implantation. Int J Oral Maxillofac Surg. 1994; 23(6 Pt 2):443-5.
DOI: 10.1016/s0901-5027(05)80043-8.
View
16.
Shin H, Jo S, Mikos A
. Biomimetic materials for tissue engineering. Biomaterials. 2003; 24(24):4353-64.
DOI: 10.1016/s0142-9612(03)00339-9.
View
17.
Harris M, Potgieter J, Archer R, Arif K
. Effect of Material and Process Specific Factors on the Strength of Printed Parts in Fused Filament Fabrication: A Review of Recent Developments. Materials (Basel). 2019; 12(10).
PMC: 6566369.
DOI: 10.3390/ma12101664.
View
18.
Ferreira J, Gloria A, Cometa S, Coelho J, Domingos M
. Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties. J Appl Biomater Funct Mater. 2017; 15(3):e185-e195.
PMC: 6379888.
DOI: 10.5301/jabfm.5000363.
View
19.
Schwach G, Vert M
. In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction. Int J Biol Macromol. 1999; 25(1-3):283-91.
DOI: 10.1016/s0141-8130(99)00043-4.
View