Zang Y, Zheng F, Feng L, Shi X, Chen X
J Imaging Inform Med. 2025; .
PMID: 39904941
DOI: 10.1007/s10278-024-01376-4.
Su Y, Tao J, Lan X, Liang C, Huang X, Zhang J
Eur J Radiol Open. 2025; 14():100630.
PMID: 39850145
PMC: 11754163.
DOI: 10.1016/j.ejro.2024.100630.
Liu C, Meng A, Xue X, Wang Y, Jia C, Yao D
Transl Lung Cancer Res. 2025; 13(12):3443-3459.
PMID: 39830767
PMC: 11736589.
DOI: 10.21037/tlcr-24-565.
Wang X, Ma C, Jiang Q, Zheng X, Xie J, He C
Transl Lung Cancer Res. 2025; 13(12):3486-3499.
PMID: 39830743
PMC: 11736594.
DOI: 10.21037/tlcr-24-646.
Peng X, Bian H, Zhao H, Jia D, Li M, Li W
Front Oncol. 2025; 14():1495911.
PMID: 39830648
PMC: 11739358.
DOI: 10.3389/fonc.2024.1495911.
Endoscopic ultrasonography-based intratumoral and peritumoral machine learning ultrasomics model for predicting the pathological grading of pancreatic neuroendocrine tumors.
Mo S, Huang C, Wang Y, Qin S
BMC Med Imaging. 2025; 25(1):22.
PMID: 39827128
PMC: 11743008.
DOI: 10.1186/s12880-025-01555-x.
Intranodular and perinodular ultrasound radiomics distinguishes benign and malignant thyroid nodules: a multicenter study.
Zhu X, Li J, Li H, Wang K, Zhang J, Meng J
Gland Surg. 2025; 13(12):2359-2371.
PMID: 39822358
PMC: 11733639.
DOI: 10.21037/gs-24-416.
Improving prediction accuracy of spread through air spaces in clinical-stage T1N0 lung adenocarcinoma using computed tomography imaging models.
Dou S, Li Z, Qiu Z, Zhang J, Chen Y, You S
JTCVS Open. 2024; 21:290-303.
PMID: 39534334
PMC: 11551290.
DOI: 10.1016/j.xjon.2024.07.018.
Habitat-based CT radiomics enhances the ability to predict spread through air spaces in stage T1 invasive lung adenocarcinoma.
Peng X, Zhao H, Wu S, Jia D, Hu M, Guo B
Front Oncol. 2024; 14:1436189.
PMID: 39464700
PMC: 11502297.
DOI: 10.3389/fonc.2024.1436189.
2.5D peritumoural radiomics predicts postoperative recurrence in stage I lung adenocarcinoma.
Lan H, Wei C, Xu F, Yang E, Lu D, Feng Q
Front Oncol. 2024; 14:1382815.
PMID: 39267836
PMC: 11390697.
DOI: 10.3389/fonc.2024.1382815.
A preoperative radiogenomic model based on quantitative heterogeneity for predicting outcomes in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy.
Zhou J, Bai Y, Zhang Y, Wang Z, Sun S, Lin L
Cancer Imaging. 2024; 24(1):98.
PMID: 39080809
PMC: 11289960.
DOI: 10.1186/s40644-024-00746-z.
Endoscopic ultrasonography-based intratumoral and peritumoral machine learning radiomics analyses for distinguishing insulinomas from non-functional pancreatic neuroendocrine tumors.
Mo S, Huang C, Wang Y, Zhao H, Wu W, Jiang H
Front Endocrinol (Lausanne). 2024; 15:1383814.
PMID: 38952387
PMC: 11215175.
DOI: 10.3389/fendo.2024.1383814.
Both intra- and peri-tumoral radiomics signatures can be used to predict lymphatic vascular space invasion and lymphatic metastasis positive status from endometrial cancer MR imaging.
Li S, Wang Y, Sun Y, Li D, Zhang Q, Ning Y
Abdom Radiol (NY). 2024; 49(11):4140-4150.
PMID: 38916618
DOI: 10.1007/s00261-024-04432-3.
Deep Learning Analysis for Predicting Tumor Spread through Air Space in Early-Stage Lung Adenocarcinoma Pathology Images.
Ou D, Lu C, Chen L, Lee W, Hu H, Chuang J
Cancers (Basel). 2024; 16(11).
PMID: 38893251
PMC: 11172106.
DOI: 10.3390/cancers16112132.
Incidence rate of occult lymph node metastasis in clinical TNM small cell lung cancer patients and radiomic prediction based on contrast-enhanced CT imaging: a multicenter study : Original research.
Jiang X, Luo C, Peng X, Zhang J, Yang L, Liu L
Respir Res. 2024; 25(1):226.
PMID: 38811960
PMC: 11138070.
DOI: 10.1186/s12931-024-02852-9.
Computed Tomography Radiomics for Preoperative Prediction of Spread Through Air Spaces in the Early Stage of Surgically Resected Lung Adenocarcinomas.
Suh Y, Han K, Kwon Y, Kim H, Lee S, Hwang S
Yonsei Med J. 2024; 65(3):163-173.
PMID: 38373836
PMC: 10896671.
DOI: 10.3349/ymj.2023.0368.
Predictive value of multiple imaging predictive models for spread through air spaces of lung adenocarcinoma: A systematic review and network meta‑analysis.
Liu C, Wang Y, Wang P, Guo F, Zhao H, Wang Q
Oncol Lett. 2024; 27(3):122.
PMID: 38348387
PMC: 10859825.
DOI: 10.3892/ol.2024.14255.
CT-Based Intratumoral and Peritumoral Radiomics Nomograms for the Preoperative Prediction of Spread Through Air Spaces in Clinical Stage IA Non-small Cell Lung Cancer.
Wang Y, Lyu D, Hu L, Wu J, Duan S, Zhou T
J Imaging Inform Med. 2024; 37(2):520-535.
PMID: 38343212
PMC: 11031508.
DOI: 10.1007/s10278-023-00939-1.
CT-based peritumoral radiomics nomogram on prediction of response and survival to induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma.
Zeng F, Ye Z, Zhou Q
J Cancer Res Clin Oncol. 2024; 150(2):50.
PMID: 38286865
PMC: 10824876.
DOI: 10.1007/s00432-023-05590-5.
CT-Based Deep-Learning Model for Spread-Through-Air-Spaces Prediction in Ground Glass-Predominant Lung Adenocarcinoma.
Lin M, Chen L, Yang S, Hsieh M, Ou D, Lee Y
Ann Surg Oncol. 2023; 31(3):1536-1545.
PMID: 37957504
DOI: 10.1245/s10434-023-14565-2.