» Articles » PMID: 32620820

Ambient Weathering of Magnesium Oxide for CO Removal from Air

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jul 5
PMID 32620820
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

To avoid dangerous climate change, new technologies must remove billions of tonnes of CO from the atmosphere every year by mid-century. Here we detail a land-based enhanced weathering cycle utilizing magnesite (MgCO) feedstock to repeatedly capture CO from the atmosphere. In this process, MgCO is calcined, producing caustic magnesia (MgO) and high-purity CO. This MgO is spread over land to carbonate for a year by reacting with atmospheric CO. The carbonate minerals are then recollected and re-calcined. The reproduced MgO is spread over land to carbonate again. We show this process could cost approximately $46-159 tCO net removed from the atmosphere, considering grid and solar electricity without post-processing costs. This technology may achieve lower costs than projections for more extensively engineered Direct Air Capture methods. It has the scalable potential to remove at least 2-3 GtCO year, and may make a meaningful contribution to mitigating climate change.

Citing Articles

Inhibition of Reaction Layer Formation on MgO(100) by Doping with Trace Amounts of Iron.

Camacho Meneses G, Weber J, Hermann R, Wanhala A, Stubbs J, Eng P J Phys Chem C Nanomater Interfaces. 2025; 129(7):3457-3468.

PMID: 40008203 PMC: 11848909. DOI: 10.1021/acs.jpcc.4c06311.


Suitability of rocks, minerals, and cement waste for CO removal via enhanced rock weathering.

Danczyk M, Oze C Commun Chem. 2024; 7(1):272.

PMID: 39567645 PMC: 11579450. DOI: 10.1038/s42004-024-01361-6.


Aqueous Electrochemical Direct Air Capture Using Alizarin Red S.

Wenger S, DAlessandro D ChemSusChem. 2024; 18(3):e202401315.

PMID: 39261283 PMC: 11789980. DOI: 10.1002/cssc.202401315.


Assessment of the Potential of Electrochemical Steps in Direct Air Capture through Techno-Economic Analysis.

Rosen N, Welter A, Schwankl M, Plumere N, Staudt J, Burger J Energy Fuels. 2024; 38(16):15469-15481.

PMID: 39165636 PMC: 11331561. DOI: 10.1021/acs.energyfuels.4c02202.


Lithium nitrate salt-assisted CO absorption for the formation of corrosion barrier layer on AZ91D magnesium alloy.

Jang G, Jun J, Keum J, Su Y, Pole M, Niverty S RSC Adv. 2024; 14(25):17696-17709.

PMID: 38832238 PMC: 11145626. DOI: 10.1039/d4ra02829e.


References
1.
Renforth P . The negative emission potential of alkaline materials. Nat Commun. 2019; 10(1):1401. PMC: 6438983. DOI: 10.1038/s41467-019-09475-5. View

2.
Gerdemann S, OConnor W, Dahlin D, Penner L, Rush H . Ex situ aqueous mineral carbonation. Environ Sci Technol. 2007; 41(7):2587-93. DOI: 10.1021/es0619253. View

3.
Manovic V, Anthony E . Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials. Environ Sci Technol. 2011; 45(24):10750-6. DOI: 10.1021/es202292c. View

4.
Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer M . A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev. 2014; 43(23):8049-80. DOI: 10.1039/c4cs00035h. View

5.
Bourzac K . Emissions: We have the technology. Nature. 2017; 550(7675):S66-S69. DOI: 10.1038/550S66a. View