» Articles » PMID: 32610133

Discovering How Heme Controls Genome Function Through Heme-omics

Overview
Journal Cell Rep
Publisher Cell Press
Date 2020 Jul 2
PMID 32610133
Citations 18
Authors
Affiliations
Soon will be listed here.
Abstract

Protein ensembles control genome function by establishing, maintaining, and deconstructing cell-type-specific chromosomal landscapes. A plethora of small molecules orchestrate cellular functions and therefore may link physiological processes with genome biology. The metabolic enzyme and hemoglobin cofactor heme induces proteolysis of a transcriptional repressor, Bach1, and regulates gene expression post-transcriptionally. However, whether heme controls genome function broadly or through prescriptive actions is unclear. Using assay for transposase-accessible chromatin sequencing (ATAC-seq), we establish a heme-dependent chromatin atlas in wild-type and mutant erythroblasts lacking enhancers that confer normal heme synthesis. Amalgamating chromatin landscapes and transcriptomes in cells with sub-physiological heme and post-heme rescue reveals parallel Bach1-dependent and Bach1-independent mechanisms that target heme-sensing chromosomal hotspots. The hotspots harbor a DNA motif demarcating heme-regulated chromatin and genes encoding proteins not known to be heme regulated, including metabolic enzymes. The heme-omics analysis establishes how an essential biochemical cofactor controls genome function and cellular physiology.

Citing Articles

The Multifaceted Roles of BACH1 in Disease: Implications for Biological Functions and Therapeutic Applications.

Wei X, He Y, Yu Y, Tang S, Liu R, Guo J Adv Sci (Weinh). 2025; 12(10):e2412850.

PMID: 39887888 PMC: 11905017. DOI: 10.1002/advs.202412850.


The Neural Palette of Heme: Altered Heme Homeostasis Underlies Defective Neurotransmission, Increased Oxidative Stress, and Disease Pathogenesis.

Soladogun A, Zhang L Antioxidants (Basel). 2025; 13(12.

PMID: 39765770 PMC: 11672823. DOI: 10.3390/antiox13121441.


Metal Ion Signaling in Biomedicine.

Rodriguez R, Muller S, Colombeau L, Solier S, Sindikubwabo F, Caneque T Chem Rev. 2025; 125(2):660-744.

PMID: 39746035 PMC: 11758815. DOI: 10.1021/acs.chemrev.4c00577.


Artemisinin-resistant Plasmodium falciparum Kelch13 mutant proteins display reduced heme-binding affinity and decreased artemisinin activation.

Rahman A, Tamseel S, Dutta S, Khan N, Faaiz M, Rastogi H Commun Biol. 2024; 7(1):1499.

PMID: 39538019 PMC: 11561146. DOI: 10.1038/s42003-024-07178-2.


Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes.

Liao R, Bresnick E Exp Hematol. 2024; 137:104252.

PMID: 38876253 PMC: 11381147. DOI: 10.1016/j.exphem.2024.104252.


References
1.
Wakabayashi A, Ulirsch J, Ludwig L, Fiorini C, Yasuda M, Choudhuri A . Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders. Proc Natl Acad Sci U S A. 2016; 113(16):4434-9. PMC: 4843446. DOI: 10.1073/pnas.1521754113. View

2.
Sun J, Brand M, Zenke Y, Tashiro S, Groudine M, Igarashi K . Heme regulates the dynamic exchange of Bach1 and NF-E2-related factors in the Maf transcription factor network. Proc Natl Acad Sci U S A. 2004; 101(6):1461-6. PMC: 341742. DOI: 10.1073/pnas.0308083100. View

3.
Ulirsch J, Lareau C, Bao E, Ludwig L, Guo M, Benner C . Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat Genet. 2019; 51(4):683-693. PMC: 6441389. DOI: 10.1038/s41588-019-0362-6. View

4.
Haldar M, Kohyama M, So A, Kc W, Wu X, Briseno C . Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell. 2014; 156(6):1223-1234. PMC: 4010949. DOI: 10.1016/j.cell.2014.01.069. View

5.
Doty R, Yan X, Lausted C, Munday A, Yang Z, Yi D . Single-cell analyses demonstrate that a heme-GATA1 feedback loop regulates red cell differentiation. Blood. 2018; 133(5):457-469. PMC: 6356983. DOI: 10.1182/blood-2018-05-850412. View