Li Y
BMC Med Res Methodol. 2025; 25(1):4.
PMID: 39789439
PMC: 11715858.
DOI: 10.1186/s12874-025-02457-w.
Wang Y, Rao C, Cheng Q, Yang J
Front Psychiatry. 2024; 15:1418969.
PMID: 39676910
PMC: 11640863.
DOI: 10.3389/fpsyt.2024.1418969.
Yang J, Chen B, Li R, Huang B, Zhao M, Liu P
Curr Med Sci. 2024; 44(6):1113-1122.
PMID: 39673002
DOI: 10.1007/s11596-024-2960-5.
Adeleke O, Adebayo S, Aworinde H, Adeleke O, Adeniyi A, Aroba O
Sci Rep. 2024; 14(1):30255.
PMID: 39632838
PMC: 11618500.
DOI: 10.1038/s41598-024-74360-1.
Smith B, Criminisi A, Sorek N, Harari Y, Sood N, Heymsfield S
PLoS One. 2024; 19(10):e0308922.
PMID: 39383158
PMC: 11463747.
DOI: 10.1371/journal.pone.0308922.
Artificial neural network inference analysis identified novel genes and gene interactions associated with skeletal muscle aging.
Tarum J, Ball G, Gustafsson T, Altun M, Santos L
J Cachexia Sarcopenia Muscle. 2024; 15(5):2143-2155.
PMID: 39210538
PMC: 11446686.
DOI: 10.1002/jcsm.13562.
A smartphone application toward detection of systolic hypertension in underserved populations.
Landry C, Dhamotharan V, Freithaler M, Hauspurg A, Muldoon M, Shroff S
Sci Rep. 2024; 14(1):15410.
PMID: 38965318
PMC: 11224237.
DOI: 10.1038/s41598-024-65269-w.
Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years.
Stamate E, Piraianu A, Ciobotaru O, Crassas R, Duca O, Fulga A
Diagnostics (Basel). 2024; 14(11).
PMID: 38893630
PMC: 11172021.
DOI: 10.3390/diagnostics14111103.
Application of artificial intelligence in hypertension.
Cho J, Park J
Clin Hypertens. 2024; 30(1):11.
PMID: 38689376
PMC: 11061896.
DOI: 10.1186/s40885-024-00266-9.
Early Diagnosis of Cardiovascular Diseases in the Era of Artificial Intelligence: An In-Depth Review.
Almansouri N, Awe M, Rajavelu S, Jahnavi K, Shastry R, Hasan A
Cureus. 2024; 16(3):e55869.
PMID: 38595869
PMC: 11002715.
DOI: 10.7759/cureus.55869.
Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine.
Aryal S, Manandhar I, Mei X, Yeoh B, Tummala R, Saha P
Camb Prism Precis Med. 2024; 1:e26.
PMID: 38550938
PMC: 10953772.
DOI: 10.1017/pcm.2023.13.
Risk factors and prediction models for cardiovascular complications of hypertension in older adults with machine learning: A cross-sectional study.
Wu Y, Xin B, Wan Q, Ren Y, Jiang W
Heliyon. 2024; 10(6):e27941.
PMID: 38509942
PMC: 10950703.
DOI: 10.1016/j.heliyon.2024.e27941.
Recent developments in machine learning modeling methods for hypertension treatment.
Kohjitani H, Koshimizu H, Nakamura K, Okuno Y
Hypertens Res. 2024; 47(3):700-707.
PMID: 38216731
DOI: 10.1038/s41440-023-01547-w.
Classifying Schizophrenia Cases by Artificial Neural Network Using Japanese Web-Based Survey Data: Case-Control Study.
He Y, Matsunaga M, Li Y, Kishi T, Tanihara S, Iwata N
JMIR Form Res. 2023; 7:e50193.
PMID: 37966882
PMC: 10687680.
DOI: 10.2196/50193.
Risk Assessment Score and Chi-Square Automatic Interaction Detection Algorithm for Hypertension Among Africans: Models From the SIREN Study.
Asowata O, Okekunle A, Akpa O, Fakunle A, Akinyemi J, Komolafe M
Hypertension. 2023; 80(12):2581-2590.
PMID: 37830199
PMC: 10715722.
DOI: 10.1161/HYPERTENSIONAHA.122.20572.
Development of a convenient and effective hypertension risk prediction model and exploration of the relationship between Serum Ferritin and Hypertension Risk: a study based on NHANES 2017-March 2020.
Guo S, Ge J, Liu S, Zhou J, Li C, Chen H
Front Cardiovasc Med. 2023; 10:1224795.
PMID: 37736023
PMC: 10510409.
DOI: 10.3389/fcvm.2023.1224795.
Survey and Evaluation of Hypertension Machine Learning Research.
Du Toit C, Tran T, Deo N, Aryal S, Lip S, Sykes R
J Am Heart Assoc. 2023; 12(9):e027896.
PMID: 37119074
PMC: 10227215.
DOI: 10.1161/JAHA.122.027896.
Age-specific risk factors for the prediction of obesity using a machine learning approach.
Jeon J, Lee S, Oh C
Front Public Health. 2023; 10:998782.
PMID: 36733276
PMC: 9887184.
DOI: 10.3389/fpubh.2022.998782.
Interpretable Deep-Learning Approaches for Osteoporosis Risk Screening and Individualized Feature Analysis Using Large Population-Based Data: Model Development and Performance Evaluation.
Suh B, Yu H, Kim H, Lee S, Kong S, Kim J
J Med Internet Res. 2022; 25:e40179.
PMID: 36482780
PMC: 9883743.
DOI: 10.2196/40179.
The Use of Machine Learning for the Care of Hypertension and Heart Failure.
Cai A, Zhu Y, Clarkson S, Feng Y
JACC Asia. 2022; 1(2):162-172.
PMID: 36338169
PMC: 9627876.
DOI: 10.1016/j.jacasi.2021.07.005.