» Articles » PMID: 32584816

Control of MRNA Translation by Dynamic Ribosome Modification

Overview
Journal PLoS Genet
Specialty Genetics
Date 2020 Jun 26
PMID 32584816
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Control of mRNA translation is a crucial regulatory mechanism used by bacteria to respond to their environment. In the soil bacterium Pseudomonas fluorescens, RimK modifies the C-terminus of ribosomal protein RpsF to influence important aspects of rhizosphere colonisation through proteome remodelling. In this study, we show that RimK activity is itself under complex, multifactorial control by the co-transcribed phosphodiesterase trigger enzyme (RimA) and a polyglutamate-specific protease (RimB). Furthermore, biochemical experimentation and mathematical modelling reveal a role for the nucleotide second messenger cyclic-di-GMP in coordinating these activities. Active ribosome regulation by RimK occurs by two main routes: indirectly, through changes in the abundance of the global translational regulator Hfq and directly, with translation of surface attachment factors, amino acid transporters and key secreted molecules linked specifically to RpsF modification. Our findings show that post-translational ribosomal modification functions as a rapid-response mechanism that tunes global gene translation in response to environmental signals.

Citing Articles

c-di-GMP inhibits rRNA methylation and impairs ribosome assembly in the presence of kanamycin.

Yu S, Hu Z, Xu X, Liang X, Shen J, Liu M EMBO Rep. 2025; 26(5):1367-1384.

PMID: 39870966 PMC: 11894153. DOI: 10.1038/s44319-025-00377-w.


Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023.

Aseev L, Koledinskaya L, Boni I Int J Mol Sci. 2024; 25(5).

PMID: 38474204 PMC: 10931766. DOI: 10.3390/ijms25052957.


The Azotobacter vinelandii AlgU regulon during vegetative growth and encysting conditions: A proteomic approach.

Chowdhury-Paul S, Martinez-Ortiz I, Pando-Robles V, Moreno S, Espin G, Merino E PLoS One. 2023; 18(11):e0286440.

PMID: 37967103 PMC: 10651043. DOI: 10.1371/journal.pone.0286440.


Electrostatic Ratchet for Successive Peptide Synthesis in Nonribosomal Molecular Machine RimK.

Ohnuki J, Arimura Y, Kono T, Kino K, Kurumizaka H, Takano M J Am Chem Soc. 2023; 145(29):15963-15970.

PMID: 37452763 PMC: 10375531. DOI: 10.1021/jacs.3c03926.


Global translational control by the transcriptional repressor TrcR in the filamentous cyanobacterium Anabaena sp. PCC 7120.

Wang Z, Yang Y, Zhang J, Zeng X, Zhang C Commun Biol. 2023; 6(1):643.

PMID: 37322092 PMC: 10272220. DOI: 10.1038/s42003-023-05012-9.


References
1.
Ramos-Gonzalez M, Travieso M, Soriano M, Matilla M, Huertas-Rosales O, Barrientos-Moreno L . Genetic Dissection of the Regulatory Network Associated with High c-di-GMP Levels in Pseudomonas putida KT2440. Front Microbiol. 2016; 7:1093. PMC: 4951495. DOI: 10.3389/fmicb.2016.01093. View

2.
Wahba A, Miller M, Niveleau A, Landers T, Carmichael G, Weber K . Subunit I of G beta replicase and 30 S ribosomal protein S1 of Escherichia coli. Evidence for the identity of the two proteins. J Biol Chem. 1974; 249(10):3314-6. View

3.
Silby M, Cerdeno-Tarraga A, Vernikos G, Giddens S, Jackson R, Preston G . Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol. 2009; 10(5):R51. PMC: 2718517. DOI: 10.1186/gb-2009-10-5-r51. View

4.
Irie Y, Starkey M, Edwards A, Wozniak D, Romeo T, Parsek M . Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol. 2010; 78(1):158-72. PMC: 2984543. DOI: 10.1111/j.1365-2958.2010.07320.x. View

5.
Martinez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Gonzalez de Heredia E, Baena I . Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS One. 2014; 9(2):e87608. PMC: 3913639. DOI: 10.1371/journal.pone.0087608. View