» Articles » PMID: 32581642

Applications of Machine Learning in MiRNA Discovery and Target Prediction

Overview
Journal Curr Genomics
Date 2020 Jun 26
PMID 32581642
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

MicroRNA (miRNA) is a small non-coding molecule that is involved in gene regulation and RNA silencing by complementary on their targets. Experimental methods for target prediction can be time-consuming and expensive. Thus, the application of the computational approach is implicated to enlighten these complications with experimental studies. However, there is still a need for an optimized approach in miRNA biology. Therefore, machine learning (ML) would initiate a new era of research in miRNA biology towards potential diseases biomarker. In this article, we described the application of ML approaches in miRNA discovery and target prediction with functions and future prospective. The implementation of a new era of computational methodologies in this direction would initiate further advanced levels of discoveries in miRNA.

Citing Articles

Integrative analysis of miRNA expression data reveals a minimal signature for tumour cells classification.

Napoletano S, Dannhauser D, Netti P, Causa F Comput Struct Biotechnol J. 2025; 27:233-242.

PMID: 39866665 PMC: 11760817. DOI: 10.1016/j.csbj.2024.12.023.


Analysis of precancerous lesion-related microRNAs for early diagnosis of cervical cancer in the Thai population.

Suvanasuthi R, Therasakvichya S, Kanchanapiboon P, Promptmas C, Chimnaronk S Sci Rep. 2025; 15(1):142.

PMID: 39747449 PMC: 11696073. DOI: 10.1038/s41598-024-84080-1.


Advancing miRNA cancer research through artificial intelligence: from biomarker discovery to therapeutic targeting.

Aswathy R, Chalos V, Suganya K, Sumathi S Med Oncol. 2024; 42(1):30.

PMID: 39688780 DOI: 10.1007/s12032-024-02579-z.


Unlocking the potential of miRNAs in detecting pulmonary tuberculosis: prospects and pitfalls.

Arya R, Kumar S, Vinetz J, Kim J, Chaurasia R Expert Rev Mol Med. 2024; 26:e32.

PMID: 39639643 PMC: 11629464. DOI: 10.1017/erm.2024.29.


A New Frontier in Phytotherapy: Harnessing the Therapeutic Power of Medicinal Herb-derived miRNAs.

Feng Y Curr Pharm Des. 2024; 30(38):3009-3017.

PMID: 39162273 DOI: 10.2174/0113816128310724240730072626.


References
1.
Nam J, Kim J, Kim S, Zhang B . ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res. 2006; 34(Web Server issue):W455-8. PMC: 1538778. DOI: 10.1093/nar/gkl321. View

2.
Orange D, Agius P, DiCarlo E, Robine N, Geiger H, Szymonifka J . Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine Learning Integration of Synovial Histologic Features and RNA Sequencing Data. Arthritis Rheumatol. 2018; 70(5):690-701. PMC: 6336443. DOI: 10.1002/art.40428. View

3.
Allmer J, Yousef M . Computational miRNomics. J Integr Bioinform. 2017; 13(5):1-2. DOI: 10.1515/jib-2016-302. View

4.
Lindow M, Gorodkin J . Principles and limitations of computational microRNA gene and target finding. DNA Cell Biol. 2007; 26(5):339-51. DOI: 10.1089/dna.2006.0551. View

5.
Tang J, Liu R, Zhang Y, Liu M, Hu Y, Shao M . Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients. Sci Rep. 2017; 7:42192. PMC: 5296901. DOI: 10.1038/srep42192. View