» Articles » PMID: 32580412

The Evolution, Spread and Global Threat of H6Nx Avian Influenza Viruses

Overview
Journal Viruses
Publisher MDPI
Specialty Microbiology
Date 2020 Jun 26
PMID 32580412
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Avian influenza viruses of the subtype H6Nx are being detected globally with increasing frequency. Some H6Nx lineages are becoming enzootic in Asian poultry and sporadic incursions into European poultry are occurring more frequently. H6Nx viruses that contain mammalian adaptation motifs pose a zoonotic threat and have caused human cases. Although currently understudied globally, H6Nx avian influenza viruses pose a substantial threat to both poultry and human health. In this review we examine the current state of knowledge of H6Nx viruses including their global distribution, tropism, transmission routes and human health risk.

Citing Articles

Evaluating the Impact of Low-Pathogenicity Avian Influenza H6N1 Outbreaks in United Kingdom and Republic of Ireland Poultry Farms during 2020.

McMenamy M, McKenna R, Bailie V, Cunningham B, Jeffers A, McCullough K Viruses. 2024; 16(7).

PMID: 39066308 PMC: 11281592. DOI: 10.3390/v16071147.


Testing pulmonary physiology in ventilated non-human primates.

Cervantes O, Berg M, Kapnadak S, Miller E, Fountain C, Curtis B J Med Primatol. 2024; 53(2):e12694.

PMID: 38454198 PMC: 10994148. DOI: 10.1111/jmp.12694.


Molecular modeling and phylogenetic analyses highlight the role of amino acid 347 of the N1 subtype neuraminidase in influenza virus host range and interspecies adaptation.

Elli S, Raffaini G, Guerrini M, Kosakovsky Pond S, Matrosovich M Front Microbiol. 2024; 14:1309156.

PMID: 38169695 PMC: 10758481. DOI: 10.3389/fmicb.2023.1309156.


Global distribution, receptor binding, and cross-species transmission of H6 influenza viruses: risks and implications for humans.

Yan Z, Li Y, Huang S, Wen F J Virol. 2023; 97(11):e0137023.

PMID: 37877722 PMC: 10688349. DOI: 10.1128/jvi.01370-23.


Evolution and Reassortment of H6 Subtype Avian Influenza Viruses.

Lin M, Yao Q, Liu J, Huo M, Zhou Y, Chen M Viruses. 2023; 15(7).

PMID: 37515233 PMC: 10383184. DOI: 10.3390/v15071547.


References
1.
Qu Z, Ma S, Kong H, Deng G, Shi J, Liu L . Identification of a key amino acid in hemagglutinin that increases human-type receptor binding and transmission of an H6N2 avian influenza virus. Microbes Infect. 2017; 19(12):655-660. DOI: 10.1016/j.micinf.2017.09.008. View

2.
Darriba D, Posada D, Kozlov A, Stamatakis A, Morel B, Flouri T . ModelTest-NG: A New and Scalable Tool for the Selection of DNA and Protein Evolutionary Models. Mol Biol Evol. 2019; 37(1):291-294. PMC: 6984357. DOI: 10.1093/molbev/msz189. View

3.
Hoffmann E, Stech J, Leneva I, Krauss S, Scholtissek C, Chin P . Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1?. J Virol. 2000; 74(14):6309-15. PMC: 112136. DOI: 10.1128/jvi.74.14.6309-6315.2000. View

4.
Tan L, Su S, Smith D, He S, Zheng Y, Shao Z . A combination of HA and PA mutations enhances virulence in a mouse-adapted H6N6 influenza A virus. J Virol. 2014; 88(24):14116-25. PMC: 4249163. DOI: 10.1128/JVI.01736-14. View

5.
Belser J, Katz J, Tumpey T . The ferret as a model organism to study influenza A virus infection. Dis Model Mech. 2011; 4(5):575-9. PMC: 3180220. DOI: 10.1242/dmm.007823. View