» Articles » PMID: 32570748

Gen. Nov., Sp. Nov., and Sp. Nov., Two Marine Anaerobes of the Fam. Nov. Producing Sulfated Glycosaminoglycan-like Exopolymers

Overview
Journal Microorganisms
Specialty Microbiology
Date 2020 Jun 24
PMID 32570748
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Recently, we isolated two marine strains, F1 and F21, which together with L21-Fru-AB are the only pure cultures of the class within the phylum Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1, F21 and reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21 encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa F1 gen. nov., sp. nov. and F21 sp. nov. as representatives of the fam. nov. within the class .

Citing Articles

Discovering Hidden Archaeal and Bacterial Lipid Producers in a Euxinic Marine System.

Boukhchtaber D, von Meijenfeldt F, Sahonero Canavesi D, Dorhout D, Bale N, Hopmans E Environ Microbiol. 2025; 27(3):e70054.

PMID: 40016913 PMC: 11868695. DOI: 10.1111/1462-2920.70054.


A deep-sea isopod that consumes sinking from the ocean's surface.

Peoples L, Gerringer M, Weston J, Leon-Zayas R, Sekarore A, Sheehan G Proc Biol Sci. 2024; 291(2030):20240823.

PMID: 39255840 PMC: 11387067. DOI: 10.1098/rspb.2024.0823.


Organic matter degradation in the deep, sulfidic waters of the Black Sea: insights into the ecophysiology of novel anaerobic bacteria.

Yadav S, Koenen M, Bale N, Reitsma W, Engelmann J, Stefanova K Microbiome. 2024; 12(1):98.

PMID: 38797849 PMC: 11129491. DOI: 10.1186/s40168-024-01816-x.


sp. nov., a novel marine anaerobic bacterium capable of degrading macroalgal polysaccharides and fixing nitrogen.

Liu N, Kivenson V, Peng X, Cui Z, Lankiewicz T, Gosselin K Appl Environ Microbiol. 2024; 90(2):e0091423.

PMID: 38265213 PMC: 10880615. DOI: 10.1128/aem.00914-23.


Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in fish.

Oliver A, Podell S, Wegley Kelly L, Sparagon W, Plominsky A, Nelson R bioRxiv. 2023; .

PMID: 38076955 PMC: 10705383. DOI: 10.1101/2023.11.28.568905.


References
1.
Ollivier B, Caumette P, Garcia J, Mah R . Anaerobic bacteria from hypersaline environments. Microbiol Rev. 1994; 58(1):27-38. PMC: 372951. DOI: 10.1128/mr.58.1.27-38.1994. View

2.
Felz S, Neu T, van Loosdrecht M, Lin Y . Aerobic granular sludge contains Hyaluronic acid-like and sulfated glycosaminoglycans-like polymers. Water Res. 2019; 169:115291. DOI: 10.1016/j.watres.2019.115291. View

3.
Duval S, Ducluzeau A, Nitschke W, Schoepp-Cothenet B . Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes. BMC Evol Biol. 2008; 8:206. PMC: 2500031. DOI: 10.1186/1471-2148-8-206. View

4.
Bienkowski M, Conrad H . Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J Biol Chem. 1985; 260(1):356-65. View

5.
. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018; 47(D1):D506-D515. PMC: 6323992. DOI: 10.1093/nar/gky1049. View