» Articles » PMID: 32561723

Highly Parallel Lab Evolution Reveals That Epistasis Can Curb the Evolution of Antibiotic Resistance

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jun 21
PMID 32561723
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic perturbations that affect bacterial resistance to antibiotics have been characterized genome-wide, but how do such perturbations interact with subsequent evolutionary adaptation to the drug? Here, we show that strong epistasis between resistance mutations and systematically identified genes can be exploited to control spontaneous resistance evolution. We evolved hundreds of Escherichia coli K-12 mutant populations in parallel, using a robotic platform that tightly controls population size and selection pressure. We find a global diminishing-returns epistasis pattern: strains that are initially more sensitive generally undergo larger resistance gains. However, some gene deletion strains deviate from this general trend and curtail the evolvability of resistance, including deletions of genes for membrane transport, LPS biosynthesis, and chaperones. Deletions of efflux pump genes force evolution on inferior mutational paths, not explored in the wild type, and some of these essentially block resistance evolution. This effect is due to strong negative epistasis with resistance mutations. The identified genes and cellular functions provide potential targets for development of adjuvants that may block spontaneous resistance evolution when combined with antibiotics.

Citing Articles

Environment-independent distribution of mutational effects emerges from microscopic epistasis.

Ardell S, Martsul A, Johnson M, Kryazhimskiy S Science. 2024; 386(6717):87-92.

PMID: 39361740 PMC: 11580693. DOI: 10.1126/science.adn0753.


In Vitro Resistance-Predicting Studies and In Vitro Resistance-Related Parameters-A Hit-to-Lead Perspective.

Krajewska J, Tyski S, Laudy A Pharmaceuticals (Basel). 2024; 17(8).

PMID: 39204172 PMC: 11357384. DOI: 10.3390/ph17081068.


Development of specialized devices for microbial experimental evolution.

Shibai A, Furusawa C Dev Growth Differ. 2024; 66(7):372-380.

PMID: 39187274 PMC: 11482599. DOI: 10.1111/dgd.12940.


Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes.

Ghiaci P, Jouhten P, Martyushenko N, Roca-Mesa H, Vazquez J, Konstantinidis D Mol Syst Biol. 2024; 20(10):1109-1133.

PMID: 39174863 PMC: 11450223. DOI: 10.1038/s44320-024-00059-0.


MomL inhibits bacterial antibiotic resistance through the starvation stringent response pathway.

Dou Q, Yuan J, Yu R, Yang J, Wang J, Zhu Y mLife. 2024; 1(4):428-442.

PMID: 38818489 PMC: 10989899. DOI: 10.1002/mlf2.12016.


References
1.
Li X, Plesiat P, Nikaido H . The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015; 28(2):337-418. PMC: 4402952. DOI: 10.1128/CMR.00117-14. View

2.
Brown E, Wright G . Antibacterial drug discovery in the resistance era. Nature. 2016; 529(7586):336-43. DOI: 10.1038/nature17042. View

3.
Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti V . Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis. 2016; 16(2):239-51. DOI: 10.1016/S1473-3099(15)00466-1. View

4.
Drawz S, Bonomo R . Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010; 23(1):160-201. PMC: 2806661. DOI: 10.1128/CMR.00037-09. View

5.
Ling L, Schneider T, Peoples A, Spoering A, Engels I, Conlon B . A new antibiotic kills pathogens without detectable resistance. Nature. 2015; 517(7535):455-9. PMC: 7414797. DOI: 10.1038/nature14098. View