» Articles » PMID: 32541875

Efficient Wettability-controlled Electroreduction of CO to CO at Au/C Interfaces

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jun 17
PMID 32541875
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

The electrochemical CO reduction reaction (CORR) represents a very promising future strategy for synthesizing carbon-containing chemicals in a more sustainable way. In spite of great progress in electrocatalyst design over the last decade, the critical role of wettability-controlled interfacial structures for CORR remains largely unexplored. Here, we systematically modify the structure of gas-liquid-solid interfaces over a typical Au/C gas diffusion electrode through wettability modification to reveal its contribution to interfacial CO transportation and electroreduction. Based on confocal laser scanning microscopy measurements, the Cassie-Wenzel coexistence state is demonstrated to be the ideal three phase structure for continuous CO supply from gas phase to Au active sites at high current densities. The pivotal role of interfacial structure for the stabilization of the interfacial CO concentration during CORR is quantitatively analysed through a newly-developed in-situ fluorescence electrochemical spectroscopic method, pinpointing the necessary CO mass transfer conditions for CORR operation at high current densities.

Citing Articles

Raman spectroscopic studies of CO reduction reactions: from catalyst surface structures to reaction mechanisms.

Zhang D, Liu X, Zhao Y, Zhang H, Rudnev A, Li J Chem Sci. 2025; .

PMID: 40007664 PMC: 11848642. DOI: 10.1039/d5sc00569h.


Soft nanoforest of metal single atoms for free diffusion catalysis.

Sun Y, Zang Y, He B, Lin G, Liu Z, Yang L Sci Adv. 2025; 11(3):eadq2948.

PMID: 39813333 PMC: 11734727. DOI: 10.1126/sciadv.adq2948.


Species mass transfer governs the selectivity of gas diffusion electrodes toward HO electrosynthesis.

Cui L, Chen B, Chen D, He C, Liu Y, Zhang H Nat Commun. 2024; 15(1):10632.

PMID: 39639001 PMC: 11621356. DOI: 10.1038/s41467-024-55091-3.


Hydrogen radical-boosted electrocatalytic CO reduction using Ni-partnered heteroatomic pairs.

Yao Z, Cheng H, Xu Y, Zhan X, Hong S, Tan X Nat Commun. 2024; 15(1):9881.

PMID: 39543091 PMC: 11564623. DOI: 10.1038/s41467-024-53529-2.


Flooding Control by Electrochemically Reduced Graphene Oxide Additives in Silver Catalyst Layers for CO Electrolysis.

Wu Y, Idros M, Feng D, Huang W, Burdyny T, Wang B ACS Appl Mater Interfaces. 2024; 16(42):56967-56974.

PMID: 39393807 PMC: 11505894. DOI: 10.1021/acsami.4c09095.


References
1.
Gao P, Li S, Bu X, Dang S, Liu Z, Wang H . Direct conversion of CO into liquid fuels with high selectivity over a bifunctional catalyst. Nat Chem. 2017; 9(10):1019-1024. DOI: 10.1038/nchem.2794. View

2.
Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L . Directly converting CO into a gasoline fuel. Nat Commun. 2017; 8:15174. PMC: 5418575. DOI: 10.1038/ncomms15174. View

3.
Alvarez A, Bansode A, Urakawa A, Bavykina A, Wezendonk T, Makkee M . Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO Hydrogenation Processes. Chem Rev. 2017; 117(14):9804-9838. PMC: 5532695. DOI: 10.1021/acs.chemrev.6b00816. View

4.
Zhou Y, Che F, Liu M, Zou C, Liang Z, De Luna P . Dopant-induced electron localization drives CO reduction to C hydrocarbons. Nat Chem. 2018; 10(9):974-980. DOI: 10.1038/s41557-018-0092-x. View

5.
Liu M, Pang Y, Zhang B, De Luna P, Voznyy O, Xu J . Enhanced electrocatalytic CO reduction via field-induced reagent concentration. Nature. 2016; 537(7620):382-386. DOI: 10.1038/nature19060. View