» Articles » PMID: 32538781

HIV-1 Vpr Induces Cell Cycle Arrest and Enhances Viral Gene Expression by Depleting CCDC137

Overview
Journal Elife
Specialty Biology
Date 2020 Jun 16
PMID 32538781
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

The HIV-1 Vpr accessory protein induces ubiquitin/proteasome-dependent degradation of many cellular proteins by recruiting them to a cullin4A-DDB1-DCAF1 complex. In so doing, Vpr enhances HIV-1 gene expression and induces (G2/M) cell cycle arrest. However, the identities of Vpr target proteins through which these biological effects are exerted are unknown. We show that a chromosome periphery protein, CCDC137/cPERP-B, is targeted for depletion by HIV-1 Vpr, in a cullin4A-DDB1-DCAF1 dependent manner. CCDC137 depletion caused G2/M cellcycle arrest, while Vpr-resistant CCDC137 mutants conferred resistance to Vpr-induced G2/M arrest. CCDC137 depletion also recapitulated the ability of Vpr to enhance HIV-1 gene expression, particularly in macrophages. Our findings indicate that Vpr promotes cell-cycle arrest and HIV-1 gene expression through depletion of CCDC137.

Citing Articles

HIV-1 Vpr drives epigenetic remodeling to enhance virus transcription and latency reactivation.

Saladino N, Leavitt E, Wong H, Ji J, Ebrahimi D, Salamango D bioRxiv. 2025; .

PMID: 39975144 PMC: 11838372. DOI: 10.1101/2025.01.31.635859.


Interactions between HIV proteins and host restriction factors: implications for potential therapeutic intervention in HIV infection.

Rashid F, Zaongo S, Iqbal H, Harypursat V, Song F, Chen Y Front Immunol. 2024; 15:1390650.

PMID: 39221250 PMC: 11361988. DOI: 10.3389/fimmu.2024.1390650.


CRL4-DCAF1 Ubiquitin Ligase Dependent Functions of HIV Viral Protein R and Viral Protein X.

Dobransky A, Root M, Hafner N, Marcum M, Sharifi H Viruses. 2024; 16(8).

PMID: 39205287 PMC: 11360348. DOI: 10.3390/v16081313.


HIV-1 Vpr combats the PU.1-driven antiviral response in primary human macrophages.

Virgilio M, Ramnani B, Chen T, Disbennett W, Lubow J, Welch J Nat Commun. 2024; 15(1):5514.

PMID: 38951492 PMC: 11217462. DOI: 10.1038/s41467-024-49635-w.


Chronic HIV Transcription, Translation, and Persistent Inflammation.

Kilroy J, Leal A, Henderson A Viruses. 2024; 16(5).

PMID: 38793632 PMC: 11125830. DOI: 10.3390/v16050751.


References
1.
Goh W, Rogel M, Kinsey C, Michael S, Fultz P, Nowak M . HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med. 1998; 4(1):65-71. DOI: 10.1038/nm0198-065. View

2.
Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H . Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008; 132(3):487-98. DOI: 10.1016/j.cell.2007.12.033. View

3.
Youn H, Lee H, Sohn H, Park U, Kim E, Youn B . RaRF confers RA resistance by sequestering RAR to the nucleolus and regulating MCL1 in leukemia cells. Oncogene. 2017; 37(3):352-362. DOI: 10.1038/onc.2017.329. View

4.
Moffat J, Grueneberg D, Yang X, Kim S, Kloepfer A, Hinkle G . A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell. 2006; 124(6):1283-98. DOI: 10.1016/j.cell.2006.01.040. View

5.
Jowett J, Planelles V, Poon B, Shah N, Chen M, Chen I . The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J Virol. 1995; 69(10):6304-13. PMC: 189529. DOI: 10.1128/JVI.69.10.6304-6313.1995. View