» Articles » PMID: 32520325

Crystal Structure and Ligand-induced Folding of the SAM/SAH Riboswitch

Overview
Specialty Biochemistry
Date 2020 Jun 11
PMID 32520325
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

While most SAM riboswitches strongly discriminate between SAM and SAH, the SAM/SAH riboswitch responds to both ligands with similar apparent affinities. We have determined crystal structures of the SAM/SAH riboswitch bound to SAH, SAM and other variant ligands at high resolution. The riboswitch forms an H-type pseudoknot structure with coaxial alignment of the stem-loop helix (P1) and the pseudoknot helix (PK). An additional three base pairs form at the non-open end of P1, and the ligand is bound at the interface between the P1 extension and the PK helix. The adenine nucleobase is stacked into the helix and forms a trans Hoogsteen-Watson-Crick base pair with a uridine, thus becoming an integral part of the helical structure. The majority of the specific interactions are formed with the adenosine. The methionine or homocysteine chain lies in the groove making a single hydrogen bond, and there is no discrimination between the sulfonium of SAM or the thioether of SAH. Single-molecule FRET analysis reveals that the riboswitch exists in two distinct conformations, and that addition of SAM or SAH shifts the population into a stable state that likely corresponds to the form observed in the crystal. A model for translational regulation is presented whereby in the absence of ligand the riboswitch is largely unfolded, lacking the PK helix so that translation can be initiated at the ribosome binding site. But the presence of ligand stabilizes the folded conformation that includes the PK helix, so occluding the ribosome binding site and thus preventing the initiation of translation.

Citing Articles

Structure and catalytic activity of the SAM-utilizing ribozyme SAMURI.

Chen H, Okuda T, Lenz A, Scheitl C, Schindelin H, Hobartner C Nat Chem Biol. 2025; .

PMID: 39779902 DOI: 10.1038/s41589-024-01808-w.


RNA structure determination: From 2D to 3D.

Deng J, Fang X, Huang L, Li S, Xu L, Ye K Fundam Res. 2024; 3(5):727-737.

PMID: 38933295 PMC: 11197651. DOI: 10.1016/j.fmre.2023.06.001.


A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states.

Rivera M, Ayon O, Diaconescu-Grabari S, Pottel J, Moitessier N, Mittermaier A Nucleic Acids Res. 2024; 52(6):3164-3179.

PMID: 38375901 PMC: 11014391. DOI: 10.1093/nar/gkae118.


Structure and function analysis of a type III preQ-I riboswitch from Escherichia coli reveals direct metabolite sensing by the Shine-Dalgarno sequence.

Schroeder G, Kiliushik D, Jenkins J, Wedekind J J Biol Chem. 2023; 299(10):105208.

PMID: 37660906 PMC: 10622847. DOI: 10.1016/j.jbc.2023.105208.


Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch.

Hu G, Zhou H Commun Biol. 2023; 6(1):791.

PMID: 37524918 PMC: 10390503. DOI: 10.1038/s42003-023-05175-5.


References
1.
Karplus P, Diederichs K . Linking crystallographic model and data quality. Science. 2012; 336(6084):1030-3. PMC: 3457925. DOI: 10.1126/science.1218231. View

2.
Schubert H, Blumenthal R, Cheng X . Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci. 2003; 28(6):329-35. PMC: 2758044. DOI: 10.1016/S0968-0004(03)00090-2. View

3.
Corbino K, Barrick J, Lim J, Welz R, Tucker B, Puskarz I . Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol. 2005; 6(8):R70. PMC: 1273637. DOI: 10.1186/gb-2005-6-8-r70. View

4.
Roth A, Breaker R . The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem. 2009; 78:305-34. PMC: 5325118. DOI: 10.1146/annurev.biochem.78.070507.135656. View

5.
Nelson J, Atilho R, Sherlock M, Stockbridge R, Breaker R . Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class. Mol Cell. 2016; 65(2):220-230. PMC: 5360189. DOI: 10.1016/j.molcel.2016.11.019. View