» Articles » PMID: 32516996

Investigating the Size and Microstrain Influence in the Magnetic Order/Disorder State of GdCu Nanoparticles

Overview
Date 2020 Jun 11
PMID 32516996
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

A series of GdCu 2 nanoparticles with controlled sizes ranging from 7 nm to 40 nm has been produced via high-energy inert-gas ball milling. Rietveld refinements on the X-ray diffraction measurements ensure that the bulk crystalline I m m a structure is retained within the nanoparticles, thanks to the employed low milling times ranging from = 0.5 to = 5 h. The analysis of the magnetic measurements shows a crossover from Superantiferromagnetism (SAF) to a Super Spin Glass state as the size decreases at NP size of 〈 D 〉 ≈ 18 nm. The microstrain contribution, which is always kept below 1%, together with the increasing surface-to-core ratio of the magnetic moments, trigger the magnetic disorder. Additionally, an extra contribution to the magnetic disorder is revealed within the SAF state, as the oscillating RKKY indirect exchange achieves to couple with the aforementioned contribution that emerges from the size reduction. The combination of both sources of disorder leads to a maximised frustration for 〈 D 〉 ≈ 25 nm sized NPs.

Citing Articles

Using small-angle scattering to guide functional magnetic nanoparticle design.

Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Alba Venero D Nanoscale Adv. 2022; 4(4):1026-1059.

PMID: 36131777 PMC: 9417585. DOI: 10.1039/d1na00482d.


Magnetic order and disorder environments in superantiferromagnetic [Formula: see text] nanoparticles.

Jefremovas E, Svedlindh P, Damay F, Alba Venero D, Michels A, Blanco J Sci Rep. 2022; 12(1):9733.

PMID: 35697857 PMC: 9192703. DOI: 10.1038/s41598-022-13817-7.


Exploring the Different Degrees of Magnetic Disorder in TbRCu Nanoparticle Alloys.

Jefremovas E, de la Fuente Rodriguez M, Alonso J, Fernandez J, Espeso J, Puente-Orench I Nanomaterials (Basel). 2020; 10(11).

PMID: 33126564 PMC: 7694043. DOI: 10.3390/nano10112148.

References
1.
Bontemps , Rajchenbach , Chamberlin , Orbach . Erratum: Dynamic scaling in the Eu0.4Sr0.6S spin-glass. Phys Rev B Condens Matter. 1986; 33(1):625. View

2.
Zhou Z, Wang L, Chi X, Bao J, Yang L, Zhao W . Engineered iron-oxide-based nanoparticles as enhanced T1 contrast agents for efficient tumor imaging. ACS Nano. 2013; 7(4):3287-96. PMC: 3657563. DOI: 10.1021/nn305991e. View

3.
Nemati Z, Khurshid H, Alonso J, Phan M, Mukherjee P, Srikanth H . From core/shell to hollow Fe/γ-Fe₂O₃ nanoparticles: evolution of the magnetic behavior. Nanotechnology. 2015; 26(40):405705. DOI: 10.1088/0957-4484/26/40/405705. View

4.
Rojas D, Barquin L, Fernandez J, Espeso J, Gomez Sal J . Size effects in the magnetic behaviour of TbAl(2) milled alloys. J Phys Condens Matter. 2011; 19(18):186214. DOI: 10.1088/0953-8984/19/18/186214. View

5.
Echevarria-Bonet C, Rojas D, Espeso J, Fernandez J, Rodriguez M, Barquin L . Magnetic phase diagram of superantiferromagnetic TbCu₂ nanoparticles. J Phys Condens Matter. 2015; 27(49):496002. DOI: 10.1088/0953-8984/27/49/496002. View