» Articles » PMID: 32512236

Circumventing Colistin Resistance by Combining Colistin and Antimicrobial Peptides to Kill Colistin-resistant and Multidrug-resistant Gram-negative Bacteria

Overview
Date 2020 Jun 9
PMID 32512236
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Objectives: Colistin is a 'last-line' antibiotic used to treat multidrug-resistant Gram-negative bacteria, but colistin resistance has emerged. Colistin normally binds to the lipid A moiety on the bacterial outer membrane, where it then destroys the bacterial membrane. Mobilize colistin resistance (MCR, encoded by mcr-1 and others) is a phosphoethanolamine transferase that modifies lipid A, preventing colistin binding. We hypothesized that combining pore-forming AMPs and colistin will circumvent this mechanism and reduce the minimum inhibitory concentration (MIC) of colistin for both colistin- and multidrug-resistant Gram-negative bacteria.

Methods: In vitro cultures were incubated for 18 h after combining bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa) with serially diluted colistin and a fixed concentration of peptide MSI-78 or OTD-244.

Results: When combined with either peptide, the colistin MIC decreased more than 4-fold for 88% of all tested isolates (n = 17; range, 4-64-fold reduction) and for 75% of colistin-resistant isolates (n = 8; range, 4-64-fold reduction). The concentrations used had no effect on red blood cells based on a conventional haemolysis assay.

Conclusions: These findings are consistent with two membrane-damaging compounds having an additive effect on bacterial killing. Combining antimicrobial peptides with colistin is a promising strategy for bypassing MCR-mediated colistin resistance, but also for improving the susceptibility of other Gram-negative bacteria while potentially reducing the therapeutic concentration of colistin needed to treat infections.

Citing Articles

Synergistic effect of two antimicrobial peptides, BP203 and MAP-0403 J-2 with conventional antibiotics against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates.

Chatupheeraphat C, Peamchai J, Luk-In S, Yainoy S, Eiamphungporn W PLoS One. 2023; 18(11):e0294287.

PMID: 37972089 PMC: 10653547. DOI: 10.1371/journal.pone.0294287.


The Antimicrobial, Antibiofilm and Anti-Inflammatory Activities of P13#1, a Cathelicidin-like Achiral Peptoid.

Cafaro V, Bosso A, Di Nardo I, DAmato A, Izzo I, De Riccardis F Pharmaceuticals (Basel). 2023; 16(10).

PMID: 37895857 PMC: 10610514. DOI: 10.3390/ph16101386.


Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria.

Moghadam M, Mojtahedi A, Moosazadeh Moghaddam M, Fasihi-Ramandi M, Mirnejad R Appl Microbiol Biotechnol. 2022; 106(11):3879-3893.

PMID: 35604438 PMC: 9125544. DOI: 10.1007/s00253-022-11940-z.


Impact of a Novel Anticoccidial Analogue on Systemic Infection in a Bioluminescent Mouse Model.

Nguyen H, Venter H, Woolford L, Young K, McCluskey A, Garg S Antibiotics (Basel). 2022; 11(1).

PMID: 35052942 PMC: 8773087. DOI: 10.3390/antibiotics11010065.


Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates.

Ontong J, Ozioma N, Voravuthikunchai S, Chusri S PLoS One. 2021; 16(1):e0244673.

PMID: 33406110 PMC: 7787437. DOI: 10.1371/journal.pone.0244673.

References
1.
Nation R, Garonzik S, Thamlikitkul V, Giamarellos-Bourboulis E, Forrest A, Paterson D . Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2016; 64(5):565-571. PMC: 5850520. DOI: 10.1093/cid/ciw839. View

2.
Guo L, Lim K, Poduje C, Daniel M, Gunn J, Hackett M . Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell. 1998; 95(2):189-98. DOI: 10.1016/s0092-8674(00)81750-x. View

3.
Laxminarayan R, Duse A, Wattal C, Zaidi A, Wertheim H, Sumpradit N . Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013; 13(12):1057-98. DOI: 10.1016/S1473-3099(13)70318-9. View

4.
Schroder J, Harder J . Human beta-defensin-2. Int J Biochem Cell Biol. 1999; 31(6):645-51. DOI: 10.1016/s1357-2725(99)00013-8. View

5.
Flamm R, Rhomberg P, Simpson K, Farrell D, Sader H, Jones R . In vitro spectrum of pexiganan activity when tested against pathogens from diabetic foot infections and with selected resistance mechanisms. Antimicrob Agents Chemother. 2015; 59(3):1751-4. PMC: 4325814. DOI: 10.1128/AAC.04773-14. View