» Articles » PMID: 32506168

Metabolic Heterogeneity and Adaptability in Brain Tumors

Overview
Publisher Springer
Specialty Biology
Date 2020 Jun 8
PMID 32506168
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

The metabolic complexity and flexibility commonly observed in brain tumors, especially glioblastoma, is fundamental for their development and progression. The ability of tumor cells to modify their genetic landscape and adapt metabolically, subverts therapeutic efficacy, and inevitably instigates therapeutic resistance. To overcome these challenges and develop effective therapeutic strategies targeting essential metabolic processes, it is necessary to identify the mechanisms underlying heterogeneity and define metabolic preferences and liabilities of malignant cells. In this review, we will discuss metabolic diversity in brain cancer and highlight the role of cancer stem cells in regulating metabolic heterogeneity. We will also highlight potential therapeutic modalities targeting metabolic vulnerabilities and examine how intercellular metabolic signaling can shape the tumor microenvironment.

Citing Articles

Advancing brain tumor therapy: unveiling the potential of PROTACs for targeted protein degradation.

Ibrahim S, Khan M, Noreen S, Firdous S, Khurram I, Rehman R Cytotechnology. 2025; 77(2):54.

PMID: 39897109 PMC: 11785894. DOI: 10.1007/s10616-025-00716-8.


Exploring the genetic progression of MDR1 in : A decade of multi-regional genetic analysis (2014-2024).

Mokuolu O, Ambrose G, Mohammed Baba Abdulkadir , Ibrahim S, Funsho I, Mokuolu T Curr Res Microb Sci. 2024; 7:100304.

PMID: 39534723 PMC: 11554628. DOI: 10.1016/j.crmicr.2024.100304.


Mitochondrial inhibitors: a new horizon in breast cancer therapy.

Yan Y, Li S, Su L, Tang X, Chen X, Gu X Front Pharmacol. 2024; 15:1421905.

PMID: 39027328 PMC: 11254633. DOI: 10.3389/fphar.2024.1421905.


Modulatory effects of cancer stem cell-derived extracellular vesicles on the tumor immune microenvironment.

Li X, Zhang C, Yue W, Jiang Y Front Immunol. 2024; 15:1362120.

PMID: 38962016 PMC: 11219812. DOI: 10.3389/fimmu.2024.1362120.


Revolutionizing Brain Tumor Care: Emerging Technologies and Strategies.

Nguyen T, Greene L, Mnatsakanyan H, Badr C Biomedicines. 2024; 12(6).

PMID: 38927583 PMC: 11202201. DOI: 10.3390/biomedicines12061376.


References
1.
Bao S, Wu Q, McLendon R, Hao Y, Shi Q, Hjelmeland A . Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006; 444(7120):756-60. DOI: 10.1038/nature05236. View

2.
Hamilton J, Brunaldi K . A model for fatty acid transport into the brain. J Mol Neurosci. 2007; 33(1):12-7. DOI: 10.1007/s12031-007-0050-3. View

3.
Stadlbauer A, Oberndorfer S, Zimmermann M, Renner B, Buchfelder M, Heinz G . Physiologic MR imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. J Cereb Blood Flow Metab. 2019; 40(3):528-538. PMC: 7026844. DOI: 10.1177/0271678X19827885. View

4.
Viale A, Pettazzoni P, Lyssiotis C, Ying H, Sanchez N, Marchesini M . Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014; 514(7524):628-32. PMC: 4376130. DOI: 10.1038/nature13611. View

5.
Pike L, Smift A, Croteau N, Ferrick D, Wu M . Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim Biophys Acta. 2011; 1807(6):726-34. DOI: 10.1016/j.bbabio.2010.10.022. View