» Articles » PMID: 32504003

DNA Origami-based Single-molecule Force Spectroscopy Elucidates RNA Polymerase III Pre-initiation Complex Stability

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Jun 7
PMID 32504003
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The TATA-binding protein (TBP) and a transcription factor (TF) IIB-like factor are important constituents of all eukaryotic initiation complexes. The reason for the emergence and strict requirement of the additional initiation factor Bdp1 in the RNA polymerase (RNAP) III system, however, remained elusive. A poorly studied aspect in this context is the effect of DNA strain arising from DNA compaction and transcriptional activity on initiation complex formation. We made use of a DNA origami-based force clamp to follow the assembly of human initiation complexes in the RNAP II and RNAP III systems at the single-molecule level under piconewton forces. We demonstrate that TBP-DNA complexes are force-sensitive and TFIIB is sufficient to stabilise TBP on a strained promoter. In contrast, Bdp1 is the pivotal component that ensures stable anchoring of initiation factors, and thus the polymerase itself, in the RNAP III system. Thereby, we offer an explanation for the crucial role of Bdp1 for the high transcriptional output of RNAP III.

Citing Articles

Recent Advances in DNA Origami-Enabled Optical Biosensors for Multi-Scenario Application.

Hao Z, Kong L, Ruan L, Deng Z Nanomaterials (Basel). 2024; 14(23).

PMID: 39683355 PMC: 11643833. DOI: 10.3390/nano14231968.


Recycling Materials for Sustainable DNA Origami Manufacturing.

Neuhoff M, Wang Y, Vantangoli N, Poirier M, Castro C, Pfeifer W Nano Lett. 2024; 24(39):12080-12087.

PMID: 39315689 PMC: 11451448. DOI: 10.1021/acs.nanolett.4c02695.


Functionalizing DNA Origami by Triplex-Directed Site-Specific Photo-Cross-Linking.

Kalra S, Donnelly A, Singh N, Matthews D, Villar-Guerra R, Bemmer V J Am Chem Soc. 2024; 146(19):13617-13628.

PMID: 38695163 PMC: 11100008. DOI: 10.1021/jacs.4c03413.


The motive forces in DNA-enabled nanomachinery.

Zhang T, Liu H iScience. 2024; 27(4):109453.

PMID: 38551008 PMC: 10973203. DOI: 10.1016/j.isci.2024.109453.


An RNA origami robot that traps and releases a fluorescent aptamer.

Vallina N, McRae E, Geary C, Andersen E Sci Adv. 2024; 10(12):eadk1250.

PMID: 38507482 PMC: 10954211. DOI: 10.1126/sciadv.adk1250.


References
1.
Werner F, Grohmann D . Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 2011; 9(2):85-98. DOI: 10.1038/nrmicro2507. View

2.
Griesenbeck J, Tschochner H, Grohmann D . Structure and Function of RNA Polymerases and the Transcription Machineries. Subcell Biochem. 2017; 83:225-270. DOI: 10.1007/978-3-319-46503-6_9. View

3.
Dienemann C, Schwalb B, Schilbach S, Cramer P . Promoter Distortion and Opening in the RNA Polymerase II Cleft. Mol Cell. 2018; 73(1):97-106.e4. DOI: 10.1016/j.molcel.2018.10.014. View

4.
Sainsbury S, Niesser J, Cramer P . Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature. 2012; 493(7432):437-40. DOI: 10.1038/nature11715. View

5.
Vannini A, Cramer P . Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell. 2012; 45(4):439-46. DOI: 10.1016/j.molcel.2012.01.023. View