» Articles » PMID: 32499663

Analysis of Electrocatalytic Metal-Organic Frameworks

Overview
Journal Coord Chem Rev
Specialty Chemistry
Date 2020 Jun 6
PMID 32499663
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The electrochemical analysis of molecular catalysts for the conversion of bulk feedstocks into energy-rich clean fuels has seen dramatic advances in the last decade. More recently, increased attention has focused on the characterization of metal-organic frameworks (MOFs) containing well-defined redox and catalytically active sites, with the overall goal to develop structurally stable materials that are industrially relevant for large-scale solar fuel syntheses. Successful electrochemical analysis of such materials draws heavily on well-established homogeneous techniques, yet the nature of solid materials presents additional challenges. In this tutorial-style review, we cover the basics of electrochemical analysis of electroactive MOFs, including considerations of bulk stability, methods of attaching MOFs to electrodes, interpreting fundamental electrochemical data, and finally electrocatalytic kinetic characterization. We conclude with a perspective of some of the prospects and challenges in the field of electrocatalytic MOFs.

Citing Articles

Beyond diffusion: ion and electron migration contribute to charge transport in redox-conducting metal-organic frameworks.

Johnson B, Castner A, Agarwala H, Ott S Chem Sci. 2025; .

PMID: 39991556 PMC: 11843255. DOI: 10.1039/d4sc08246j.


Microenvironment Matters: Copper-Carbon Composites Enable a Highly Efficient Carbon Dioxide Reduction Reaction to C Products.

Shen Y, Hsu Y, Chang Y, Ma J, Peng K, Lu Y ACS Appl Mater Interfaces. 2025; 17(6):9378-9390.

PMID: 39902810 PMC: 11826886. DOI: 10.1021/acsami.4c20586.


Diffusion-programmed catalysis in nanoporous material.

Panda S, Maity T, Sarkar S, Manna A, Mondal J, Haldar R Nat Commun. 2025; 16(1):1231.

PMID: 39900924 PMC: 11790907. DOI: 10.1038/s41467-025-56575-6.


The Molecular Nature of Redox-Conductive Metal-Organic Frameworks.

Li J, Ott S Acc Chem Res. 2024; 57(19):2836-2846.

PMID: 39288193 PMC: 11447836. DOI: 10.1021/acs.accounts.4c00430.


Structural Reconstruction of a Cobalt- and Ferrocene-Based Metal-Organic Framework during the Electrochemical Oxygen Evolution Reaction.

Doughty T, Zingl A, Wunschek M, Pichler C, Watkins M, Roy S ACS Appl Mater Interfaces. 2024; 16(31):40814-40824.

PMID: 39041926 PMC: 11310903. DOI: 10.1021/acsami.4c03262.


References
1.
Downes C, Clough A, Chen K, Yoo J, Marinescu S . Evaluation of the H Evolving Activity of Benzenehexathiolate Coordination Frameworks and the Effect of Film Thickness on H Production. ACS Appl Mater Interfaces. 2017; 10(2):1719-1727. DOI: 10.1021/acsami.7b15969. View

2.
Greathouse J, Allendorf M . The interaction of water with MOF-5 simulated by molecular dynamics. J Am Chem Soc. 2006; 128(33):10678-9. DOI: 10.1021/ja063506b. View

3.
Trickett C, Gagnon K, Lee S, Gandara F, Burgi H, Yaghi O . Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl. 2015; 54(38):11162-7. DOI: 10.1002/anie.201505461. View

4.
Canivet J, Vandichel M, Farrusseng D . Origin of highly active metal-organic framework catalysts: defects? Defects!. Dalton Trans. 2015; 45(10):4090-9. DOI: 10.1039/c5dt03522h. View

5.
Johnson B, Bhunia A, Fei H, Cohen S, Ott S . Development of a UiO-Type Thin Film Electrocatalysis Platform with Redox-Active Linkers. J Am Chem Soc. 2018; 140(8):2985-2994. PMC: 6067658. DOI: 10.1021/jacs.7b13077. View