» Articles » PMID: 32490069

Annotation Dataset of the Cardiotocographic Recordings Constituting the "CTU-CHB Intra-partum CTG Database"

Overview
Journal Data Brief
Date 2020 Jun 4
PMID 32490069
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The proposed dataset provides annotations for the 552 cardiotocographic (CTG) recordings included in the publicly available "CTU-CHB intra-partum CTG database" from Physionet (https://physionet.org/content/ctu-uhb-ctgdb/1.0.0/). Each CTG recording is composed by two simultaneously acquired signals: i) the fetal heart rate (FHR) and ii) the maternal tocogram (representing uterine activity). Annotations consist in the detection of starting and ending points of specific CTG events on both FHR signal and maternal tocogram. Annotated events for the FHR signal are the bradycardia, tachycardia, acceleration and deceleration episodes. Annotated events for the maternal tocogram are the uterine contractions. The dataset also reports classification of each deceleration as early, late, variable or prolonged, in relation to the presence of a uterine contraction. Annotations were obtained by an expert gynecologist with the support of CTG Analyzer, a dedicated software application for automatic analysis of digital CTG recordings. These annotations can be useful in the development, testing and comparison of algorithms for the automatic analysis of digital CTG recordings, which can make CTG interpretation more objective and independent from clinician's experience.

Citing Articles

Computerised Cardiotocography Analysis for the Automated Detection of Fetal Compromise during Labour: A Review.

Mendis L, Palaniswami M, Brownfoot F, Keenan E Bioengineering (Basel). 2023; 10(9).

PMID: 37760109 PMC: 10525263. DOI: 10.3390/bioengineering10091007.


Comparison of fetal heart rate baseline estimation by the cardiotocograph network and clinicians: a multidatabase retrospective assessment study.

Bai J, Pan X, Lu Y, Zhong M, Wang H, Zheng Z Front Cardiovasc Med. 2023; 10:1059211.

PMID: 37621563 PMC: 10445644. DOI: 10.3389/fcvm.2023.1059211.


Multimodal learning for fetal distress diagnosis using a multimodal medical information fusion framework.

Zhang Y, Deng Y, Zhou Z, Zhang X, Jiao P, Zhao Z Front Physiol. 2022; 13:1021400.

PMID: 36419838 PMC: 9676934. DOI: 10.3389/fphys.2022.1021400.


Machine Learning Model for Classifying the Results of Fetal Cardiotocography Conducted in High-Risk Pregnancies.

Park T, Chang H, Choi B, Jung J, Kang S, Yoon S Yonsei Med J. 2022; 63(7):692-700.

PMID: 35748081 PMC: 9226828. DOI: 10.3349/ymj.2022.63.7.692.


Challenges of Developing Robust AI for Intrapartum Fetal Heart Rate Monitoring.

OSullivan M, Considine E, ORiordan M, Marnane W, Rennie J, Boylan G Front Artif Intell. 2021; 4:765210.

PMID: 34765970 PMC: 8576107. DOI: 10.3389/frai.2021.765210.

References
1.
Agostinelli A, Braccili E, Marchegiani E, Rosati R, Sbrollini A, Burattini L . Statistical baseline assessment in cardiotocography. Annu Int Conf IEEE Eng Med Biol Soc. 2017; 2017:3166-3169. DOI: 10.1109/EMBC.2017.8037529. View

2.
Ayres-de-Campos D, Spong C, Chandraharan E . FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography. Int J Gynaecol Obstet. 2015; 131(1):13-24. DOI: 10.1016/j.ijgo.2015.06.020. View

3.
Chudacek V, Spilka J, Bursa M, Janku P, Hruban L, Huptych M . Open access intrapartum CTG database. BMC Pregnancy Childbirth. 2014; 14:16. PMC: 3898997. DOI: 10.1186/1471-2393-14-16. View

4.
Sbrollini A, Agostinelli A, Marcantoni I, Morettini M, Burattini L, Di Nardo F . eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images. Comput Methods Programs Biomed. 2018; 156:133-139. DOI: 10.1016/j.cmpb.2017.12.030. View

5.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R . PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20. DOI: 10.1161/01.cir.101.23.e215. View