» Articles » PMID: 32475410

Protein Labeling for FRET with Methoxycoumarin and Acridonylalanine

Overview
Journal Methods Enzymol
Specialty Biochemistry
Date 2020 Jun 2
PMID 32475410
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Site-specific protein labeling can be used to monitor protein motions and interactions in real time using Förster resonance energy transfer (FRET). While there are many fluorophores available for protein labeling, few FRET pairs are suitable for monitoring intramolecular protein motions without being disruptive to protein folding and function. Here, we describe the synthesis and use of a minimally perturbing FRET pair comprised of methoxycoumarin maleimide (Mcm-Mal) and acridonylalanine (Acd). Acd can be incorporated into a protein through unnatural amino acid mutagenesis. Mcm-Mal is fluorogenic when reacted with cysteine and can label cysteine/Acd double mutant proteins. This labeling strategy provides an easy to install FRET pair with a working range or 15-40Å, making it ideal for monitoring most intramolecular motions. Additionally, Mcm/Acd FRET can be combined with tryptophan fluorescence for monitoring multiple protein motions via three color FRET.

Citing Articles

Ligand-coupled conformational changes in a cyclic nucleotide-gated ion channel revealed by time-resolved transition metal ion FRET.

Eggan P, Gordon S, Zagotta W Elife. 2024; 13.

PMID: 39656198 PMC: 11630820. DOI: 10.7554/eLife.99854.


Ligand-Coupled Conformational Changes in a Cyclic Nucleotide-Gated Ion Channel Revealed by Time-Resolved Transition Metal Ion FRET.

Eggan P, Gordon S, Zagotta W bioRxiv. 2024; .

PMID: 39411160 PMC: 11475872. DOI: 10.1101/2024.04.25.591185.


Measuring conformational equilibria in allosteric proteins with time-resolved tmFRET.

Zagotta W, Evans E, Eggan P, Tessmer M, Shaffer K, Petersson E Biophys J. 2024; 123(14):2050-2062.

PMID: 38303511 PMC: 11309986. DOI: 10.1016/j.bpj.2024.01.033.


Measuring conformational equilibria in allosteric proteins with time-resolved tmFRET.

Zagotta W, Evans E, Eggan P, Tessmer M, Shaffer K, Petersson E bioRxiv. 2023; .

PMID: 37873384 PMC: 10592786. DOI: 10.1101/2023.10.09.561594.


FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer.

Cory M, Jones C, Shaffer K, Venkatesh Y, Giannakoulias S, Perez R Protein Sci. 2023; 32(5):e4633.

PMID: 36974585 PMC: 10108435. DOI: 10.1002/pro.4633.


References
1.
Haney C, Cleveland C, Wissner R, Owei L, Robustelli J, Daniels M . Site-Specific Fluorescence Polarization for Studying the Disaggregation of α-Synuclein Fibrils by Small Molecules. Biochemistry. 2017; 56(5):683-691. PMC: 5520965. DOI: 10.1021/acs.biochem.6b01060. View

2.
Vetter S, Leclerc E . Novel aspects of calmodulin target recognition and activation. Eur J Biochem. 2003; 270(3):404-14. DOI: 10.1046/j.1432-1033.2003.03414.x. View

3.
Haney C, Wissner R, Warner J, Wang Y, Ferrie J, Covell D . Comparison of strategies for non-perturbing labeling of α-synuclein to study amyloidogenesis. Org Biomol Chem. 2015; 14(5):1584-92. PMC: 4733880. DOI: 10.1039/c5ob02329g. View

4.
Haney C, Wissner R, Petersson E . Multiply labeling proteins for studies of folding and stability. Curr Opin Chem Biol. 2015; 28:123-30. PMC: 5082133. DOI: 10.1016/j.cbpa.2015.07.007. View

5.
Chin D, Means A . Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 2000; 10(8):322-8. DOI: 10.1016/s0962-8924(00)01800-6. View