Background:
Nuclear grade is of importance for treatment selection and prognosis in patients with clear cell renal cell carcinoma (ccRCC).
Purpose:
To develop and validate an MRI-based radiomic model for preoperative predicting WHO/ISUP nuclear grade in ccRCC.
Study Type:
Retrospective.
Population:
In all, 379 patients with histologically confirmed ccRCC. Training cohort (n = 252) and validation cohort (n = 127) were randomly assigned.
Field Strength/sequence:
Pretreatment 3.0T renal MRI. Imaging sequences were fat-suppressed T WI, contrast-enhanced T WI, and diffusion weighted imaging.
Assessment:
Three prediction models were developed using selected radiomic features, radiomic and clinicoradiologic characteristics, and a model containing only clinicoradiologic characteristics. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were used to assess the predictive performance of these models in predicting high-grade ccRCC.
Statistical Tests:
The least absolute shrinkage and selection operator (LASSO) and minimum redundancy maximum relevance (mRMR) method were used for the selection of radiomic features and clinicoradiologic characteristics, respectively. Multivariable logistic regression analysis was used to develop the radiomic signature of radiomic features and clinicoradiologic model of clinicoradiologic characteristics.
Results:
The radiomic signature showed good performance in discriminating high-grade (grades 3 and 4) from low-grade (grades 1 and 2) ccRCC, with sensitivity, specificity, and AUC of 77.3%, 80.0%, and 0.842, respectively, in the validation cohort. The radiomic model, combining radiomic signature and clinicoradiologic characteristics, displayed good predictive ability for high-grade with sensitivity, specificity, and accuracy of 63.6%, 93.3%, and 88.2%, respectively, in the validation cohort. The radiomic model showed a significantly better performance than the clinicoradiologic model (P < 0.05).
Data Conclusion:
Multiparametric MRI-based radiomic model can predict WHO/ISUP grade in patients with ccRCC with satisfying performance, and thus could help the physician to improve treatment decisions.
Level Of Evidence:
3 TECHNICAL EFFICACY STAGE: 2.
Citing Articles
CT Urography-Based Radiomics to Predict ISUP Grading of Clear Cell Renal Cell Carcinoma.
Jiao P, Wang B, Ni X, Lu Y, Yang R, Liu Y
J Cancer. 2025; 16(4):1118-1126.
PMID: 39895776
PMC: 11786028.
DOI: 10.7150/jca.105173.
Machine learning-based multiparametric MRI radiomics nomogram for predicting WHO/ISUP nuclear grading of clear cell renal cell carcinoma.
Yang Y, Zhang Z, Zhang H, Liu M, Zhang J
Front Oncol. 2024; 14:1467775.
PMID: 39575426
PMC: 11578869.
DOI: 10.3389/fonc.2024.1467775.
The value of radiomics based on 2-[18 F]FDG PET/CT in predicting WHO/ISUP grade of clear cell renal cell carcinoma.
Han Y, Wang G, Zhang J, Pan Y, Cui J, Li C
EJNMMI Res. 2024; 14(1):115.
PMID: 39570474
PMC: 11582283.
DOI: 10.1186/s13550-024-01182-7.
Multiparameter computed tomography (CT) radiomics signature fusion-based model for the preoperative prediction of clear cell renal cell carcinoma nuclear grade: a multicenter development and external validation study.
Xv Y, Wei Z, Lv F, Jiang Q, Guo H, Zheng Y
Quant Imaging Med Surg. 2024; 14(10):7031-7045.
PMID: 39429571
PMC: 11485359.
DOI: 10.21037/qims-24-35.
Multi-sequence MRI-based radiomics model to preoperatively predict the WHO/ISUP grade of clear Cell Renal Cell Carcinoma: a two-center study.
Chen R, Su Q, Li Y, Shen P, Zhang J, Tan Y
BMC Cancer. 2024; 24(1):1176.
PMID: 39333970
PMC: 11438199.
DOI: 10.1186/s12885-024-12930-2.
Development and validation of a CT based radiomics nomogram for preoperative prediction of ISUP/WHO grading in renal clear cell carcinoma.
Liu X, Han X, Wang X, Xu K, Wang M, Zhang G
Abdom Radiol (NY). 2024; 50(3):1228-1239.
PMID: 39311950
DOI: 10.1007/s00261-024-04576-2.
Prediction of clear cell renal cell carcinoma ≤ 4cm: visual assessment of ultrasound characteristics versus ultrasonographic radiomics analysis.
Yang F, Zhang D, Zhao L, Mao Y, Mu J, Wang H
Front Oncol. 2024; 14:1298710.
PMID: 39114306
PMC: 11304449.
DOI: 10.3389/fonc.2024.1298710.
Nomogram combining pre-operative clinical characteristics and spectral CT parameters for predicting the WHO/ISUP pathological grading in clear cell renal cell carcinoma.
Zhang H, Li F, Jing M, Xi H, Zheng Y, Liu J
Abdom Radiol (NY). 2024; 49(4):1185-1193.
PMID: 38340180
DOI: 10.1007/s00261-024-04199-7.
Non-Invasive Tumor Grade Evaluation in Von Hippel-Lindau-Associated Clear Cell Renal Cell Carcinoma: A Magnetic Resonance Imaging-Based Study.
Zahergivar A, Yazdian Anari P, Mendhiratta N, Lay N, Singh S, Dehghani Firouzabadi F
J Magn Reson Imaging. 2024; 60(3):1076-1081.
PMID: 38299714
PMC: 11291699.
DOI: 10.1002/jmri.29222.
Radiomics vs radiologist in bladder and renal cancer. Results from a systematic review.
Tramanzoli P, Castellani D, De Stefano V, Brocca C, Nedbal C, Chiacchio G
Cent European J Urol. 2023; 76(1):12-19.
PMID: 37064257
PMC: 10091893.
DOI: 10.5173/ceju.2023.252.
Deep-learning-based ensemble method for fully automated detection of renal masses on magnetic resonance images.
Anush A, Rohini G, Nicola S, WalaaEldin E, Eranga U
J Med Imaging (Bellingham). 2023; 10(2):024501.
PMID: 36950139
PMC: 10026851.
DOI: 10.1117/1.JMI.10.2.024501.
Differential Diagnosis of Type 1 and Type 2 Papillary Renal Cell Carcinoma Based on Enhanced CT Radiomics Nomogram.
Gao Y, Wang X, Wang S, Miao Y, Zhu C, Li C
Front Oncol. 2022; 12:854979.
PMID: 35719928
PMC: 9204229.
DOI: 10.3389/fonc.2022.854979.
Preoperative Prediction of Malignant Transformation of Sinonasal Inverted Papilloma Using MR Radiomics.
Yan Y, Liu Y, Tao J, Li Z, Qu X, Guo J
Front Oncol. 2022; 12:870544.
PMID: 35402254
PMC: 8983836.
DOI: 10.3389/fonc.2022.870544.
Diagnostic performance of MRI, SPECT, and PET in detecting renal cell carcinoma: a systematic review and meta-analysis.
Yin Q, Xu H, Zhong Y, Ni J, Hu S
BMC Cancer. 2022; 22(1):163.
PMID: 35148700
PMC: 8840296.
DOI: 10.1186/s12885-022-09239-3.
Machine learning-based CT radiomics approach for predicting WHO/ISUP nuclear grade of clear cell renal cell carcinoma: an exploratory and comparative study.
Xv Y, Lv F, Guo H, Zhou X, Tan H, Xiao M
Insights Imaging. 2021; 12(1):170.
PMID: 34800179
PMC: 8605949.
DOI: 10.1186/s13244-021-01107-1.
Value of artificial intelligence model based on unenhanced computed tomography of urinary tract for preoperative prediction of calcium oxalate monohydrate stones .
Tang L, Li W, Zeng X, Wang R, Yang X, Luo G
Ann Transl Med. 2021; 9(14):1129.
PMID: 34430570
PMC: 8350703.
DOI: 10.21037/atm-21-965.
Preoperative Predicting the WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma by Computed Tomography-Based Radiomics Features.
Moldovanu C, Boca B, Lebovici A, Tamas-Szora A, Feier D, Crisan N
J Pers Med. 2020; 11(1).
PMID: 33374569
PMC: 7822466.
DOI: 10.3390/jpm11010008.