ApoE and ApoC-III-defined HDL Subtypes: a Descriptive Study of Their Lecithin Cholesterol Acyl Transferase and Cholesteryl Ester Transfer Protein Content and Activity
Overview
Endocrinology
Authors
Affiliations
Background: The functionality of high-density lipoproteins (HDL) is a better cardiovascular risk predictor than HDL concentrations. One of the key elements of HDL functionality is its apolipoprotein composition. Lecithin-cholesterol acyl transferase (LCAT) and cholesterol-ester transfer protein (CETP) are enzymes involved in HDL-mediated reverse cholesterol transport. This study assessed the concentration and activity of LCAT and CETP in HDL subspecies defined by their content of apolipoproteins E (apoE) and C-III (apoC-III) in humans.
Methods: Eighteen adults (ten women and eight men, mean age 55.6, BMI 26.9 Kg/m, HbA1c 5.4%) were studied. HDL from each participant were isolated and divided into four subspecies containing respectively: No apoE and no apoC-III (E-C-), apoE but not apoC-III (E + C-), apoC-III but no apoE (E-C+) and both apoE and apoC-III (E + C+). The concentration and enzymatic activity of LCAT and CETP were measured within each HDL subspecies using immunoenzymatic and fluorometric methods. Additionally, the size distribution of HDL in each apolipoprotein-defined fraction was determined using non-denaturing electrophoresis and anti-apoA-I western blotting.
Results: HDL without apoE or apoC-III was the predominant HDL subtype. The size distribution of HDL was very similar in all the four apolipoprotein-defined subtypes. LCAT was most abundant in E-C- HDL (3.58 mg/mL, 59.6% of plasma LCAT mass), while HDL with apoE or apoC-III had much less LCAT (19.8, 12.2 and 8.37% of plasma LCAT respectively for E + C-, E-C+ and E + C+). LCAT mass was lower in E + C- HDL relative to E-C- HDL, but LCAT activity was similar in both fractions, signaling a greater activity-to-mass ratio associated with the presence of apoE. Both CETP mass and CETP activity showed only slight variations across HDL subspecies. There was an inverse correlation between plasma LCAT activity and concentrations of both E-C+ pre-beta HDL (r = - 0.55, P = 0.017) and E-C- alpha 1 HDL (r = - 0.49, P = 0.041). Conversely, there was a direct correlation between plasma CETP activity and concentrations of E-C+ alpha 1 HDL (r = 0.52, P = 0.025).
Conclusions: The presence of apoE in small HDL is correlated with increased LCAT activity and esterification of plasma cholesterol. These results favor an interpretation that LCAT and apoE interact to enhance anti-atherogenic pathways of HDL.
Proteomic analysis emphasizes the adaptation of energy metabolism in horses during endurance races.
Gotic J, Spelic L, Kules J, Horvatic A, Gelemanovic A, Ljubic B BMC Vet Res. 2025; 21(1):67.
PMID: 39955578 PMC: 11830206. DOI: 10.1186/s12917-025-04518-0.
Pan B, Chen C, Chen F, Shen M Int J Mol Sci. 2024; 25(23.
PMID: 39684468 PMC: 11641554. DOI: 10.3390/ijms252312759.
Bekenova N, Aitkaliyev A, Vochshenkova T, Kassiyeva B, Benberin V Diagnostics (Basel). 2024; 14(17).
PMID: 39272762 PMC: 11394646. DOI: 10.3390/diagnostics14171978.
Chen S, Zhang M, Yang P, Guo J, Liu L, Yang Z J Lipids. 2024; 2024:5324127.
PMID: 38757060 PMC: 11098603. DOI: 10.1155/2024/5324127.
Zhou T, Yang K, Huang J, Fu W, Yan C, Wang Y Molecules. 2023; 28(5).
PMID: 36903601 PMC: 10005177. DOI: 10.3390/molecules28052357.