» Articles » PMID: 32443721

Ubiquitous Electron Transport in Non-Electron Transfer Proteins

Overview
Journal Life (Basel)
Specialty Biology
Date 2020 May 24
PMID 32443721
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Many proteins that have no known role in electron transfer processes are excellent electronic conductors. This surprising characteristic is not generally evident in bulk aggregates or crystals, or in isolated, solvated peptides, because the outer hydrophilic shell of the protein presents a barrier to charge injection. Ligands that penetrate this barrier make excellent electrical contacts, yielding conductivities on the order of a S/m. The Fermi Energy of metal electrodes is aligned with the energy of internal electronic states of the protein, as evidenced by resonant transmission peaks at about 0.3V on the Normal Hydrogen Electrode scale. This energy is about 0.7 V less than the oxidation potential of aromatic amino acids, indicating a large reduction in electrostatic reorganization energy losses in the interior of the proteins. Consistent with a possible biological role for this conductance, there is a strong dependence on protein conformation. Thus, direct measurement of conductance is a powerful new way to read out protein conformation in real time, opening the way to new types of single molecule sensors and sequencing devices.

Citing Articles

Conductance Channels in a Single-Entity Enzyme.

Colombo R, Nascimento S, Crespilho F J Phys Chem Lett. 2024; 15(43):10795-10801.

PMID: 39432824 PMC: 11533225. DOI: 10.1021/acs.jpclett.4c01796.


Ferritin Single-Electron Transistor.

Labra-Munoz J, van der Zant H J Phys Chem B. 2024; 128(26):6387-6393.

PMID: 38916107 PMC: 11228996. DOI: 10.1021/acs.jpcb.4c01937.


Heavy Water Reduces the Electronic Conductance of Protein Wires via Deuteron Interactions with Aromatic Residues.

Afsari S, Mukherjee S, Halloran N, Ghirlanda G, Ryan E, Wang X Nano Lett. 2023; 23(19):8907-8913.

PMID: 37772726 PMC: 11177565. DOI: 10.1021/acs.nanolett.3c02263.


Fabrication of electron tunneling probes for measuring single-protein conductance.

Jiang T, Yi L, Liu X, Ivanov A, Edel J, Tang L Nat Protoc. 2023; 18(8):2579-2599.

PMID: 37420088 DOI: 10.1038/s41596-023-00846-3.


Functionalized electrodes embedded in nanopores: read-out enhancement?.

Fyta M Chem Asian J. 2022; 18(1):e202200916.

PMID: 36372991 PMC: 10107472. DOI: 10.1002/asia.202200916.


References
1.
Zhang B, Song W, Brown J, Nemanich R, Lindsay S . Electronic Conductance Resonance in Non-Redox-Active Proteins. J Am Chem Soc. 2020; 142(13):6432-6438. PMC: 7185870. DOI: 10.1021/jacs.0c01805. View

2.
Wang F, Gu Y, OBrien J, Yi S, Yalcin S, Srikanth V . Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers. Cell. 2019; 177(2):361-369.e10. PMC: 6720112. DOI: 10.1016/j.cell.2019.03.029. View

3.
Odella E, Mora S, Wadsworth B, Huynh M, Goings J, Liddell P . Controlling Proton-Coupled Electron Transfer in Bioinspired Artificial Photosynthetic Relays. J Am Chem Soc. 2018; 140(45):15450-15460. DOI: 10.1021/jacs.8b09724. View

4.
Sek S, Misicka A, Swiatek K, Maicka E . Conductance of alpha-helical peptides trapped within molecular junctions. J Phys Chem B. 2006; 110(39):19671-7. DOI: 10.1021/jp063073z. View

5.
Lever G, Cole D, Hine N, Haynes P, Payne M . Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules. J Phys Condens Matter. 2013; 25(15):152101. DOI: 10.1088/0953-8984/25/15/152101. View