Rosetta Custom Score Functions Accurately Predict ΔΔG of Mutations at Protein-protein Interfaces Using Machine Learning
Overview
Affiliations
Protein-protein interfaces play essential roles in a variety of biological processes and many therapeutic molecules are targeted at these interfaces. However, accurate predictions of the effects of interfacial mutations to identify "hotspots" have remained elusive despite the myriad of modeling and machine learning methods tested. Here, for the first time, we demonstrate that nonlinear reweighting of energy terms from Rosetta, through the use of machine learning, exhibits improved predictability of ΔΔG values associated with interfacial mutations.
Estimating Absolute Protein-Protein Binding Free Energies by a Super Learner Model.
Chaves E, Sartori J, Santos W, Cruz C, Mhrous E, Nacimento-Filho M J Chem Inf Model. 2025; 65(5):2602-2609.
PMID: 39973292 PMC: 11898044. DOI: 10.1021/acs.jcim.4c01641.
Dahal L, Graham T, Dailey G, Heckert A, Tjian R, Darzacq X Elife. 2025; 12.
PMID: 39792435 PMC: 11723585. DOI: 10.7554/eLife.92979.
Dahal L, Graham T, Dailey G, Heckert A, Tjian R, Darzacq X bioRxiv. 2023; .
PMID: 37745337 PMC: 10516011. DOI: 10.1101/2023.09.16.558083.
Perez R, Li X, Giannakoulias S, Petersson E J Chem Inf Model. 2023; 63(18):5727-5733.
PMID: 37552230 PMC: 10777593. DOI: 10.1021/acs.jcim.3c00817.
Chen C, Boorla V, Banerjee D, Chowdhury R, Cavener V, Nissly R Proc Natl Acad Sci U S A. 2021; 118(42).
PMID: 34588290 PMC: 8594574. DOI: 10.1073/pnas.2106480118.