» Articles » PMID: 32436107

Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field

Overview
Publisher Springer
Specialty Biotechnology
Date 2020 May 22
PMID 32436107
Citations 163
Authors
Affiliations
Soon will be listed here.
Abstract

The unique physicochemical characteristics of nanoparticles have recently gained increasing attention in a diverse set of applications, particularly in the biomedical field. However, concerns about the potential toxicological effects of nanoparticles remain, as they have a higher tendency to generate excessive amounts of reactive oxygen species (ROS). Due to the strong oxidation potential, the excess ROS induced by nanoparticles can result in the damage of biomolecules and organelle structures and lead to protein oxidative carbonylation, lipid peroxidation, DNA/RNA breakage, and membrane structure destruction, which further cause necrosis, apoptosis, or even mutagenesis. This review aims to give a summary of the mechanisms and responsible for ROS generation by nanoparticles at the cellular level and provide insights into the mechanics of ROS-mediated biotoxicity. We summarize the literature on nanoparticle toxicity and suggest strategies to optimize nanoparticles for biomedical applications.

Citing Articles

Macrophage-targeting Antisenescence nanomedicine enables in-Situ NO induction for Gaseous and antioxidative atherosclerosis intervention.

Peng Y, Feng W, Huang H, Chen Y, Yang S Bioact Mater. 2025; 48:294-312.

PMID: 40060144 PMC: 11889351. DOI: 10.1016/j.bioactmat.2025.02.025.


A facile synthesis of silver nanoparticles using Woodfordia fruticosa flower extracts for certain bacteria inhibition applications.

Dhanapal V, Subhapriya P, Arangarajan K, Jeevanantham A, Sudhakar P, Kandavelu V Heliyon. 2025; 11(4):e42125.

PMID: 40040973 PMC: 11876905. DOI: 10.1016/j.heliyon.2025.e42125.


Rational Design of Safer Inorganic Nanoparticles via Mechanistic Modeling-informed Machine Learning.

Cave J, Christiono A, Schiavone C, Pownall H, Cristini V, Pownall H Res Sq. 2025; .

PMID: 40034433 PMC: 11875313. DOI: 10.21203/rs.3.rs-5960303/v1.


Fabrication of biosynthesized nickel ferrites nanoparticles and evaluation of their insecticidal efficacy on beetles (Blaps polychresta) testicular integrity.

Arafat E, Eltaweil A, Abd El-Monaem E, Elhenawy H, Hussein H, El-Samad L Sci Rep. 2025; 15(1):7214.

PMID: 40021762 PMC: 11871077. DOI: 10.1038/s41598-025-90496-0.


The blood-brain barriers: novel nanocarriers for central nervous system diseases.

Liu J, Wang T, Dong J, Lu Y J Nanobiotechnology. 2025; 23(1):146.

PMID: 40011926 PMC: 11866817. DOI: 10.1186/s12951-025-03247-8.


References
1.
Martin L . DNA damage and repair: relevance to mechanisms of neurodegeneration. J Neuropathol Exp Neurol. 2008; 67(5):377-87. PMC: 2474726. DOI: 10.1097/NEN.0b013e31816ff780. View

2.
Davaeifar S, Modarresi M, Mohammadi M, Hashemi E, Shafiei M, Maleki H . Synthesizing, characterizing, and toxicity evaluating of Phycocyanin-ZnO nanorod composites: A back to nature approaches. Colloids Surf B Biointerfaces. 2018; 175:221-230. DOI: 10.1016/j.colsurfb.2018.12.002. View

3.
Canesi L, Ciacci C, Fabbri R, Marcomini A, Pojana G, Gallo G . Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res. 2011; 76:16-21. DOI: 10.1016/j.marenvres.2011.06.005. View

4.
Hirano S, Kanno S, Furuyama A . Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol. 2008; 232(2):244-51. DOI: 10.1016/j.taap.2008.06.016. View

5.
Nurunnabi M, Khatun Z, Reeck G, Lee D, Lee Y . Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl Mater Interfaces. 2014; 6(15):12413-21. DOI: 10.1021/am504071z. View