» Articles » PMID: 32421974

Magnetoliposomes in Controlled-Release Drug Delivery Systems

Overview
Publisher Begell House
Date 2020 May 19
PMID 32421974
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

Liposomes, one of the most promising drug delivery carriers, have been extensively studied for the treatment of various diseases and have made their way to the market. Magnetic nanoparticles have been attracting great interest for diagnostic and therapeutic applications due to their unique magnetic properties. An integration of liposomes and magnetic nanoparticles gives great potential to the field of smart drug delivery systems, including magnetically guided drug delivery, image-guided drug delivery, and externally triggered controlled drug release using hyperthermia or alternating magnetic fields. In this review, we discuss the recent development of magnetoliposomes for controlled-release drug delivery systems and their potential.

Citing Articles

Navigating the Clinical Landscape of Liposomal Therapeutics in Cancer Treatment.

Kozak A, Lavrih E, Mikhaylov G, Turk B, Vasiljeva O Pharmaceutics. 2025; 17(2).

PMID: 40006643 PMC: 11859495. DOI: 10.3390/pharmaceutics17020276.


Development and Characterization of Magnetic Nanoemulsion-Based Senolytic Peptides for Osteoarthritis Treatment.

Zara-Danceanu C, Garcia-Fernandez J, Herea D, Gherca D, de Francisco Carrera I, Labusca L Int J Mol Sci. 2025; 26(3).

PMID: 39941060 PMC: 11818740. DOI: 10.3390/ijms26031292.


Nano-Drug Delivery Systems Targeting CAFs: A Promising Treatment for Pancreatic Cancer.

Wang M, Xue W, Yuan H, Wang Z, Yu L Int J Nanomedicine. 2024; 19:2823-2849.

PMID: 38525013 PMC: 10959015. DOI: 10.2147/IJN.S451151.


LGR5 as a Therapeutic Target of Antibody-Functionalized Biomimetic Magnetoliposomes for Colon Cancer Therapy.

Cepero A, Jimenez-Carretero M, Jabalera Y, Gago L, Luque C, Cabeza L Int J Nanomedicine. 2024; 19:1843-1865.

PMID: 38414530 PMC: 10898605. DOI: 10.2147/IJN.S440881.


Hybrid Magnetic Lipid-Based Nanoparticles for Cancer Therapy.

Luiz M, Dutra J, Viegas J, de Araujo J, Junior A, Chorilli M Pharmaceutics. 2023; 15(3).

PMID: 36986612 PMC: 10058222. DOI: 10.3390/pharmaceutics15030751.

References
1.
Han X, Li Z, Sun J, Luo C, Li L, Liu Y . Stealth CD44-targeted hyaluronic acid supramolecular nanoassemblies for doxorubicin delivery: probing the effect of uncovalent pegylation degree on cellular uptake and blood long circulation. J Control Release. 2014; 197:29-40. DOI: 10.1016/j.jconrel.2014.10.024. View

2.
Wang X, Yang R, Yuan C, An Y, Tang Q, Chen D . Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo. Target Oncol. 2018; 13(4):481-494. DOI: 10.1007/s11523-018-0577-y. View

3.
Li N, Peng L, Chen X, Nakagawa S, Gao J . Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo. Int J Nanomedicine. 2012; 6:3241-50. PMC: 3252672. DOI: 10.2147/IJN.S26152. View

4.
Yatvin M, Weinstein J, DENNIS W, Blumenthal R . Design of liposomes for enhanced local release of drugs by hyperthermia. Science. 1978; 202(4374):1290-3. DOI: 10.1126/science.364652. View

5.
Ito A, Fujioka M, Yoshida T, Wakamatsu K, Ito S, Yamashita T . 4-S-Cysteaminylphenol-loaded magnetite cationic liposomes for combination therapy of hyperthermia with chemotherapy against malignant melanoma. Cancer Sci. 2007; 98(3):424-30. PMC: 11159801. DOI: 10.1111/j.1349-7006.2006.00382.x. View