» Articles » PMID: 32419108

Phenotypes, Transcriptome, and Novel Biofilm Formation Associated with the YdcI Gene

Overview
Publisher Springer
Specialty Microbiology
Date 2020 May 19
PMID 32419108
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

The ydcI gene has previously been shown to encode a DNA-binding protein involved with acid stress resistance and induced biofilm formation in a strain of Salmonella enterica serovar Typhimurium. In addition, characterisation of the ydcI gene in Escherichia coli and other bacteria demonstrated strikingly different tolerance for induced ydcI expression across Gram negative species. In this report, we investigated the conservation of these phenotypes across multiple strains of S. Typhimurium and E. coli, and we used RNA Seq to identify the transcriptome of the ΔydcI mutant compared to WT in S. Typhimurium and E. coli (to establish the YdcI regulon in each species). We constructed deletion mutants in each species based on the RNA Seq results and tested these mutants for the relevant ydcI-related phenotypes. Though no evidence for a role in these phenotypes was found via the RNA Seq deletion mutants, we found that the ydcI-induced biofilm in S. Typhimurium is formed independently of the major biofilm genes csgA and bcsA indicating a potentially novel type of biofilm formation.

Citing Articles

Evolution of pH-sensitive transcription termination in during adaptation to repeated long-term starvation.

Worthan S, McCarthy R, Delaleau M, Stikeleather R, Bratton B, Boudvillain M Proc Natl Acad Sci U S A. 2024; 121(39):e2405546121.

PMID: 39298488 PMC: 11441560. DOI: 10.1073/pnas.2405546121.


Evolution of pH-sensitive transcription termination during adaptation to repeated long-term starvation.

Worthan S, McCarthy R, Delaleau M, Stikeleather R, Bratton B, Boudvillain M bioRxiv. 2024; .

PMID: 38464051 PMC: 10925284. DOI: 10.1101/2024.03.01.582989.


Ribosome profiling reveals the fine-tuned response of to mild and severe acid stress.

Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K mSystems. 2023; 8(6):e0103723.

PMID: 37909716 PMC: 10746267. DOI: 10.1128/msystems.01037-23.


Acid-tolerant bacteria and prospects in industrial and environmental applications.

Mallick S, Das S Appl Microbiol Biotechnol. 2023; 107(11):3355-3374.

PMID: 37093306 DOI: 10.1007/s00253-023-12529-w.


A systems approach discovers the role and characteristics of seven LysR type transcription factors in Escherichia coli.

Rodionova I, Gao Y, Monk J, Hefner Y, Wong N, Szubin R Sci Rep. 2022; 12(1):7274.

PMID: 35508583 PMC: 9068703. DOI: 10.1038/s41598-022-11134-7.

References
1.
Amin S, Roberts J, Patterson D, Coley A, Allred J, Denner J . Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium. RNA Biol. 2016; 13(3):331-42. PMC: 4829330. DOI: 10.1080/15476286.2016.1144010. View

2.
Ayres E, Thomson V, Merino G, Balderes D, Figurski D . Precise deletions in large bacterial genomes by vector-mediated excision (VEX). The trfA gene of promiscuous plasmid RK2 is essential for replication in several gram-negative hosts. J Mol Biol. 1993; 230(1):174-85. DOI: 10.1006/jmbi.1993.1134. View

3.
Barnhart M, Chapman M . Curli biogenesis and function. Annu Rev Microbiol. 2006; 60:131-47. PMC: 2838481. DOI: 10.1146/annurev.micro.60.080805.142106. View

4.
Bougdour A, Wickner S, Gottesman S . Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev. 2006; 20(7):884-97. PMC: 1472289. DOI: 10.1101/gad.1400306. View

5.
Bougdour A, Cunning C, Baptiste P, Elliott T, Gottesman S . Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol. 2008; 68(2):298-313. DOI: 10.1111/j.1365-2958.2008.06146.x. View