» Articles » PMID: 32415874

In Vivo Imaging of the Tumor-Associated Enzyme NCEH1 with a Covalent PET Probe

Overview
Specialty Chemistry
Date 2020 May 17
PMID 32415874
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Herein, we report the development of an F-labeled, activity-based small-molecule probe targeting the cancer-associated serine hydrolase NCEH1. We undertook a focused medicinal chemistry campaign to simultaneously preserve potent and specific NCEH1 labeling in live cells and animals, while permitting facile F radionuclide incorporation required for PET imaging. The resulting molecule, [ F]JW199, labels active NCEH1 in live cells at nanomolar concentrations and greater than 1000-fold selectivity relative to other serine hydrolases. [ F]JW199 displays rapid, NCEH1-dependent accumulation in mouse tissues. Finally, we demonstrate that [ F]JW199 labels aggressive cancer tumor cells in vivo, which uncovered localized NCEH1 activity at the leading edge of triple-negative breast cancer tumors, suggesting roles for NCEH1 in tumor aggressiveness and metastasis.

Citing Articles

ABHD12 contributes to tumorigenesis and sorafenib resistance by preventing ferroptosis in hepatocellular carcinoma.

Cai M, Luo J, Yang C, Yang X, Zhang C, Ma L iScience. 2023; 26(12):108340.

PMID: 38053637 PMC: 10694648. DOI: 10.1016/j.isci.2023.108340.


Spatial Chemoproteomics for Mapping the Active Proteome.

Swenson C, Smitha Pillai K, Carlos A, Moellering R Isr J Chem. 2023; 63(3-4).

PMID: 38046285 PMC: 10688764. DOI: 10.1002/ijch.202200104.


Covalent Proteins as Targeted Radionuclide Therapies Enhance Antitumor Effects.

Klauser P, Chopra S, Cao L, Bobba K, Yu B, Seo Y ACS Cent Sci. 2023; 9(6):1241-1251.

PMID: 37396859 PMC: 10311652. DOI: 10.1021/acscentsci.3c00288.


KIAA1363-A Multifunctional Enzyme in Xenobiotic Detoxification and Lipid Ester Hydrolysis.

Wagner C, Hois V, Taschler U, Schupp M, Lass A Metabolites. 2022; 12(6).

PMID: 35736449 PMC: 9229287. DOI: 10.3390/metabo12060516.


Chemical Probes and Activity-Based Protein Profiling for Cancer Research.

Mazid M, Park S, Rao Cheekatla S, Murale D, Shin K, Lee J Int J Mol Sci. 2022; 23(11).

PMID: 35682614 PMC: 9180054. DOI: 10.3390/ijms23115936.


References
1.
Moellering R, Cravatt B . How chemoproteomics can enable drug discovery and development. Chem Biol. 2012; 19(1):11-22. PMC: 3312051. DOI: 10.1016/j.chembiol.2012.01.001. View

2.
Lentz C, Sheldon J, Crawford L, Cooper R, Garland M, Amieva M . Identification of a S. aureus virulence factor by activity-based protein profiling (ABPP). Nat Chem Biol. 2018; 14(6):609-617. PMC: 6202179. DOI: 10.1038/s41589-018-0060-1. View

3.
Nomura D, Dix M, Cravatt B . Activity-based protein profiling for biochemical pathway discovery in cancer. Nat Rev Cancer. 2010; 10(9):630-8. PMC: 3021511. DOI: 10.1038/nrc2901. View

4.
Li G, Montgomery J, Eckert M, Chang J, Tienda S, Lengyel E . An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells. Nat Commun. 2017; 8(1):1775. PMC: 5701173. DOI: 10.1038/s41467-017-01854-0. View

5.
Sanman L, Bogyo M . Activity-based profiling of proteases. Annu Rev Biochem. 2014; 83:249-73. DOI: 10.1146/annurev-biochem-060713-035352. View