» Articles » PMID: 32412711

Wrong but Useful - What Covid-19 Epidemiologic Models Can and Cannot Tell Us

Overview
Journal N Engl J Med
Specialty General Medicine
Date 2020 May 16
PMID 32412711
Citations 178
Authors
Affiliations
Soon will be listed here.
Citing Articles

Significance of supervision sampling in control of communicable respiratory disease simulated by a new model during different stages of the disease.

Houssou Hounye A, Pan X, Zhao Y, Cao C, Wang J, Venunye A Sci Rep. 2025; 15(1):3787.

PMID: 39885197 PMC: 11782622. DOI: 10.1038/s41598-025-86739-9.


Leveraging dynamics informed neural networks for predictive modeling of COVID-19 spread: a hybrid SEIRV-DNNs approach.

Cheng C, Aruchunan E, Noor Aziz M Sci Rep. 2025; 15(1):2043.

PMID: 39814760 PMC: 11735935. DOI: 10.1038/s41598-025-85440-1.


Integrating artificial intelligence with mechanistic epidemiological modeling: a scoping review of opportunities and challenges.

Ye Y, Pandey A, Bawden C, Sumsuzzman D, Rajput R, Shoukat A Nat Commun. 2025; 16(1):581.

PMID: 39794317 PMC: 11724045. DOI: 10.1038/s41467-024-55461-x.


Ensemble modeling of SARS-CoV-2 immune dynamics in immunologically naïve rhesus macaques predicts that potent, early innate immune responses drive viral elimination.

Byrne C, Schiffer J Front Immunol. 2024; 15:1426016.

PMID: 39575237 PMC: 11578959. DOI: 10.3389/fimmu.2024.1426016.


Predictive modelling of the effectiveness of vaccines against COVID-19 in Bogotá: Methodological innovation involving different variants and computational optimisation efficiency.

Espinosa O, White L, Bejarano V, Aguas R, Rincon D, Mora L Heliyon. 2024; 10(21):e39725.

PMID: 39559218 PMC: 11570482. DOI: 10.1016/j.heliyon.2024.e39725.