» Articles » PMID: 32403822

Terahertz Time-domain Polarimetry (THz-TDP) Based on the Spinning E-O Sampling Technique: Determination of Precision and Calibration

Overview
Journal Opt Express
Date 2020 May 15
PMID 32403822
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

We have developed a terahertz time-domain polarimetry (THz-TDP) system by applying frequency modulation to electro-optic sampling detection in a nonlinear crystal. We characterized the precision of this system in determining the polarization angles to be 1.3 for fixed time delay, and 0.5 for complete time-domain waveform. Furthermore, we calculated the Jones matrix of the optical components used for beam propagation to calibrate the induced systematic error. The advantages of employing this calibration approach are demonstrated on a sapphire crystal investigated at different sample test positions in transmission configuration, and using high resistivity Si, AlN and quartz in reflection geometry. The new THz-TDP technique has the advantage of not using any external polarizers, and therefore is not constrained by their optical performance limitations, such as restricted bandwidths and frequency-dependent extinction ratio. Finally, the THz-TDP technique can be easily implemented on existing time-domain spectroscopy (TDS) systems.

Citing Articles

A handheld polarimetric imaging device and calibration technique for accurate mapping of terahertz Stokes vectors.

Harris Z, Xu K, Arbab M Sci Rep. 2024; 14(1):17714.

PMID: 39085453 PMC: 11292021. DOI: 10.1038/s41598-024-68530-4.


Terahertz polarimetric imaging of biological tissue: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering.

Xu K, Arbab M Biomed Opt Express. 2024; 15(4):2328-2342.

PMID: 38633080 PMC: 11019684. DOI: 10.1364/BOE.515623.


Terahertz polarimetric imaging of biological tissues: Monte Carlo modeling of signal contrast mechanisms due to Mie scattering.

Xu K, Arbab M Res Sq. 2024; .

PMID: 38168438 PMC: 10760297. DOI: 10.21203/rs.3.rs-3745690/v1.


Polarimetric imaging of back-scattered terahertz speckle fields using a portable scanner.

Xu K, Harris Z, Arbab M Opt Express. 2023; 31(7):11308-11319.

PMID: 37155769 PMC: 10316681. DOI: 10.1364/OE.482733.


Terahertz PHASR Scanner with 2 kHz, 100 picosecond Time-Domain Trace Acquisition Rate and an Extended Field-of-View Based on a Heliostat Design.

Harris Z, Arbab M IEEE Trans Terahertz Sci Technol. 2022; 12(6):619-632.

PMID: 36531441 PMC: 9757810. DOI: 10.1109/tthz.2022.3200210.


References
1.
Nemoto N, Higuchi T, Kanda N, Konishi K, Kuwata-Gonokami M . Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulses. Opt Express. 2014; 22(15):17915-29. DOI: 10.1364/OE.22.017915. View

2.
Shimano R, Yumoto G, Yoo J, Matsunaga R, Tanabe S, Hibino H . Quantum Faraday and Kerr rotations in graphene. Nat Commun. 2013; 4:1841. DOI: 10.1038/ncomms2866. View

3.
Acbas G, Niessen K, Snell E, Markelz A . Optical measurements of long-range protein vibrations. Nat Commun. 2014; 5:3076. DOI: 10.1038/ncomms4076. View

4.
Neshat M, Armitage N . Improved measurement of polarization state in terahertz polarization spectroscopy. Opt Lett. 2012; 37(11):1811-3. DOI: 10.1364/OL.37.001811. View

5.
Neshat M, Armitage N . Terahertz time-domain spectroscopic ellipsometry: instrumentation and calibration. Opt Express. 2012; 20(27):29063-75. DOI: 10.1364/OE.20.029063. View