Witt K, Villanea F
Am J Biol Anthropol. 2025; 186 Suppl 78:e70010.
PMID: 40071816
PMC: 11898561.
DOI: 10.1002/ajpa.70010.
Hackenberg M, Brunn N, Vogel T, Binder H
Commun Biol. 2025; 8(1):414.
PMID: 40069486
PMC: 11897155.
DOI: 10.1038/s42003-025-07872-9.
Passemiers A, Tuveri S, Jatsenko T, Vanderstichele A, Busschaert P, Coosemans A
Genome Biol. 2025; 26(1):49.
PMID: 40055826
PMC: 11887355.
DOI: 10.1186/s13059-025-03511-y.
He Z, Yang S, Cao J, Gao H, Peng C
Cancer Med. 2025; 14(5):e70739.
PMID: 40052528
PMC: 11886608.
DOI: 10.1002/cam4.70739.
Hochstetler A, Hehnly C, Dawes W, Harris D, Sadegh C, Mangano F
Fluids Barriers CNS. 2025; 22(1):24.
PMID: 40033423
PMC: 11877769.
DOI: 10.1186/s12987-025-00632-1.
Interpretable machine learning to evaluate relationships between DAO/DAOA (pLG72) protein data and features in clinical assessments, functional outcome, and cognitive function in schizophrenia patients.
Lin C, Lin E, Lane H
Schizophrenia (Heidelb). 2025; 11(1):27.
PMID: 39987274
PMC: 11846841.
DOI: 10.1038/s41537-024-00548-z.
Explainable artificial intelligence of DNA methylation-based brain tumor diagnostics.
Benfatto S, Sill M, Jones D, Pfister S, Sahm F, von Deimling A
Nat Commun. 2025; 16(1):1787.
PMID: 39979307
PMC: 11842776.
DOI: 10.1038/s41467-025-57078-0.
Machine learning techniques for independent gait recovery prediction in acute anterior circulation ischemic stroke.
Ma J, Xie Y
J Neuroeng Rehabil. 2025; 22(1):19.
PMID: 39891212
PMC: 11786359.
DOI: 10.1186/s12984-025-01548-5.
A benchmarking study of individual somatic variant callers and voting-based ensembles for whole-exome sequencing.
Guille A, Adelaide J, Finetti P, Andre F, Birnbaum D, Mamessier E
Brief Bioinform. 2025; 26(1).
PMID: 39828270
PMC: 11790059.
DOI: 10.1093/bib/bbae697.
Risk of intraoperative hemorrhage during cesarean scar ectopic pregnancy surgery: development and validation of an interpretable machine learning prediction model.
Chen X, Zhang H, Guo D, Yang S, Liu B, Hao Y
EClinicalMedicine. 2024; 78:102969.
PMID: 39687425
PMC: 11646795.
DOI: 10.1016/j.eclinm.2024.102969.
Prediction of mucinous adenocarcinoma in colorectal cancer with mucinous components detected in preoperative biopsy diagnosis.
Ling T, Zuo Z, Huang M, Wu L, Ma J, Huang X
Abdom Radiol (NY). 2024; .
PMID: 39665990
DOI: 10.1007/s00261-024-04743-5.
Interpretable Machine Learning Approach for Predicting 30-Day Mortality of Critical Ill Patients with Pulmonary Embolism and Heart Failure: A Retrospective Study.
Liu J, Li R, Yao T, Liu G, Guo L, He J
Clin Appl Thromb Hemost. 2024; 30:10760296241304764.
PMID: 39633282
PMC: 11618897.
DOI: 10.1177/10760296241304764.
Enhancing type 2 diabetes mellitus prediction by integrating metabolomics and tree-based boosting approaches.
Arslan A, Yagin F, Algarni A, Karaaslan E, Al-Hashem F, Ardigo L
Front Endocrinol (Lausanne). 2024; 15:1444282.
PMID: 39588339
PMC: 11586166.
DOI: 10.3389/fendo.2024.1444282.
Digital Image Processing to Detect Adaptive Evolution.
Amin M, Hasan M, DeGiorgio M
Mol Biol Evol. 2024; 41(12).
PMID: 39565932
PMC: 11631197.
DOI: 10.1093/molbev/msae242.
Thyroid Hormone Biomonitoring: A Review on Their Metabolism and Machine-Learning Based Analysis on Effects of Endocrine Disrupting Chemicals.
Chen S, Yu M, Yao Y, Li Y, He A, Zhou Z
Environ Health (Wash). 2024; 2(6):350-372.
PMID: 39473465
PMC: 11503987.
DOI: 10.1021/envhealth.3c00184.
Advancements in genetic research by the Hispanic Community Health Study/Study of Latinos: A 10-year retrospective review.
Rao H, Weiss M, Moon J, Perreira K, Daviglus M, Kaplan R
HGG Adv. 2024; 6(1):100376.
PMID: 39473183
PMC: 11754138.
DOI: 10.1016/j.xhgg.2024.100376.
Advancing non-alcoholic fatty liver disease prediction: a comprehensive machine learning approach integrating SHAP interpretability and multi-cohort validation.
Yang B, Lu H, Ran Y
Front Endocrinol (Lausanne). 2024; 15:1450317.
PMID: 39439566
PMC: 11493712.
DOI: 10.3389/fendo.2024.1450317.
Development and validation of a multimodal deep learning framework for vascular cognitive impairment diagnosis.
Fan F, Song H, Jiang J, He H, Sun D, Xu Z
iScience. 2024; 27(10):110945.
PMID: 39391736
PMC: 11465129.
DOI: 10.1016/j.isci.2024.110945.
Designing interpretable deep learning applications for functional genomics: a quantitative analysis.
van Hilten A, Katz S, Saccenti E, Niessen W, Roshchupkin G
Brief Bioinform. 2024; 25(5).
PMID: 39293804
PMC: 11410376.
DOI: 10.1093/bib/bbae449.
An interpretable machine learning method for risk stratification of patients with acute coronary syndrome.
Zhu X, Zhang K, Li X, Su F, Tian J
Heliyon. 2024; 10(17):e36815.
PMID: 39263147
PMC: 11387528.
DOI: 10.1016/j.heliyon.2024.e36815.