Gomis J, Sambou A, Nguepjop J, Tossim H, Seye M, Djiboune R
Front Plant Sci. 2025; 15:1488166.
PMID: 39886684
PMC: 11779571.
DOI: 10.3389/fpls.2024.1488166.
Pokhrel S, Kharel P, Pandey S, Botton S, Nugraha G, Holbrook C
Front Genet. 2025; 15():1492434.
PMID: 39845184
PMC: 11750809.
DOI: 10.3389/fgene.2024.1492434.
Grabowski P, Dang P, Jenkins J, Sreedasyam A, Webber J, Lamb M
G3 (Bethesda). 2024; 14(11).
PMID: 39217411
PMC: 11540320.
DOI: 10.1093/g3journal/jkae208.
Zheng Z, Sun Z, Qi F, Fang Y, Lin K, Pavan S
Nat Genet. 2024; 56(9):1975-1984.
PMID: 39138385
PMC: 11387195.
DOI: 10.1038/s41588-024-01876-7.
Fang X, Liu L, Li M, Song H, Zhou Y
BMC Plant Biol. 2024; 24(1):620.
PMID: 38943100
PMC: 11212391.
DOI: 10.1186/s12870-024-05343-7.
Deciphering peanut complex genomes paves a way to understand its origin and domestication.
Pan Y, Zhuang Y, Liu T, Chen H, Wang L, Varshney R
Plant Biotechnol J. 2023; 21(11):2173-2181.
PMID: 37523347
PMC: 10579718.
DOI: 10.1111/pbi.14125.
Deciphering evolutionary dynamics of WRKY genes in Arachis species.
Chen M, Li M, Zhao L, Song H
BMC Genomics. 2023; 24(1):48.
PMID: 36707767
PMC: 9881300.
DOI: 10.1186/s12864-023-09149-z.
Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement.
Garg V, Dudchenko O, Wang J, Khan A, Gupta S, Kaur P
J Adv Res. 2022; 42:315-329.
PMID: 36513421
PMC: 9788938.
DOI: 10.1016/j.jare.2021.10.009.
Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut.
Liu Y, Shao L, Zhou J, Li R, Pandey M, Han Y
J Adv Res. 2022; 42:237-248.
PMID: 36513415
PMC: 9788939.
DOI: 10.1016/j.jare.2022.01.016.
The fate of drought-related genes after polyploidization in cv. Tifrunner.
Zhang Y, Chai M, Zhang X, Yang G, Yao X, Song H
Physiol Mol Biol Plants. 2022; 28(6):1249-1259.
PMID: 35910439
PMC: 9334475.
DOI: 10.1007/s12298-022-01198-0.
Dissection of valine-glutamine genes and their responses to drought stress in Arachis hypogaea cv. Tifrunner.
Zhang T, Wang Z, Zhang Y, Yang G, Song H
Funct Integr Genomics. 2022; 22(4):491-501.
PMID: 35366145
DOI: 10.1007/s10142-022-00847-7.
Identification of a major locus for flowering pattern sheds light on plant architecture diversification in cultivated peanut.
Kunta S, Chu Y, Levy Y, Harel A, Abbo S, Ozias-Akins P
Theor Appl Genet. 2022; 135(5):1767-1777.
PMID: 35260930
DOI: 10.1007/s00122-022-04068-1.
Development and Genetic Characterization of Peanut Advanced Backcross Lines That Incorporate Root-Knot Nematode Resistance From .
Ballen-Taborda C, Chu Y, Ozias-Akins P, Holbrook C, Timper P, Jackson S
Front Plant Sci. 2022; 12:785358.
PMID: 35111175
PMC: 8801422.
DOI: 10.3389/fpls.2021.785358.
Proteome evaluation of homolog abundance patterns in Arachis hypogaea cv. Tifrunner.
Duan Z, Zhang Y, Zhang T, Chen M, Song H
Plant Methods. 2022; 18(1):6.
PMID: 35027052
PMC: 8756696.
DOI: 10.1186/s13007-022-00840-y.
Chloroplast Phylogenomic Analyses Reveal a Maternal Hybridization Event Leading to the Formation of Cultivated Peanuts.
Tian X, Shi L, Guo J, Fu L, Du P, Huang B
Front Plant Sci. 2022; 12:804568.
PMID: 34975994
PMC: 8718879.
DOI: 10.3389/fpls.2021.804568.
Legacy genetics of in the peanut crop shows the profound benefits of international seed exchange.
Bertioli D, Clevenger J, Godoy I, Stalker H, Wood S, Santos J
Proc Natl Acad Sci U S A. 2021; 118(38).
PMID: 34518223
PMC: 8463892.
DOI: 10.1073/pnas.2104899118.
Genetic mapping and QTL analysis for peanut smut resistance.
de Blas F, Bruno C, Arias R, Ballen-Taborda C, Mamani E, Oddino C
BMC Plant Biol. 2021; 21(1):312.
PMID: 34215182
PMC: 8252251.
DOI: 10.1186/s12870-021-03023-4.
Comprehensive analysis of coding sequence architecture features and gene expression in .
Dong S, Zhang L, Pang W, Zhang Y, Wang C, Li Z
Physiol Mol Biol Plants. 2021; 27(2):213-222.
PMID: 33707864
PMC: 7907404.
DOI: 10.1007/s12298-021-00938-y.