» Articles » PMID: 32391346

Production of Terpenoids by Synthetic Biology Approaches

Overview
Date 2020 May 12
PMID 32391346
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Terpenoids are a large family of natural products with remarkable diverse biological functions, and have a wide range of applications as pharmaceuticals, flavors, pigments, and biofuels. Synthetic biology is presenting possibilities for sustainable and efficient production of high value-added terpenoids in engineered microbial cell factories, using and which are identified as well-known industrial workhorses. They also provide a promising alternative to produce non-native terpenes on account of available genetic tools in metabolic engineering and genome editing. In this review, we summarize the recent development in terpenoids production by synthetic biology approaches.

Citing Articles

Biosynthesis of Edible Terpenoids: Hosts and Applications.

Wang M, Zhang Z, Liu X, Liu Z, Liu R Foods. 2025; 14(4).

PMID: 40002116 PMC: 11854313. DOI: 10.3390/foods14040673.


Substitute Yeast Extract While Maintaining Performance: Showcase Amorpha-4,11-Diene Production.

Castillo-Saldarriaga C, Santos C, Sarria S, Ajikumar P, Takors R Microb Biotechnol. 2024; 17(11):e70056.

PMID: 39570580 PMC: 11580704. DOI: 10.1111/1751-7915.70056.


Impact of plant monoterpenes on insect pest management and insect-associated microbes.

Qasim M, Islam W, Rizwan M, Hussain D, Noman A, Khan K Heliyon. 2024; 10(20):e39120.

PMID: 39498017 PMC: 11532279. DOI: 10.1016/j.heliyon.2024.e39120.


Ashbya gossypii as a versatile platform to produce sabinene from agro-industrial wastes.

Munoz-Fernandez G, Montero-Bullon J, Luis Martinez J, Buey R, Jimenez A Fungal Biol Biotechnol. 2024; 11(1):16.

PMID: 39472989 PMC: 11520522. DOI: 10.1186/s40694-024-00186-1.


Identifying sesterterpenoids via feature-based molecular networking and small-scale fermentation.

Lv K, Duan Y, Li X, Wang X, Xing C, Lan K Appl Microbiol Biotechnol. 2024; 108(1):483.

PMID: 39377838 PMC: 11461746. DOI: 10.1007/s00253-024-13299-9.


References
1.
Kwak S, Yun E, Lane S, Joong Oh E, Kim K, Jin Y . Redirection of the Glycolytic Flux Enhances Isoprenoid Production in Saccharomyces cerevisiae. Biotechnol J. 2019; 15(2):e1900173. DOI: 10.1002/biot.201900173. View

2.
Martinez V, Lauritsen I, Hobel T, Li S, Nielsen A, Norholm M . CRISPR/Cas9-based genome editing for simultaneous interference with gene expression and protein stability. Nucleic Acids Res. 2017; 45(20):e171. PMC: 5714205. DOI: 10.1093/nar/gkx797. View

3.
Peng B, Plan M, Chrysanthopoulos P, Hodson M, Nielsen L, Vickers C . A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metab Eng. 2016; 39:209-219. DOI: 10.1016/j.ymben.2016.12.003. View

4.
Hong J, Park S, Kim S, Kim S, Hahn J . Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol. 2018; 103(1):211-223. DOI: 10.1007/s00253-018-9449-8. View

5.
Yuan W, Lv S, Chen L, Zhao Y, Deng Z, Hong K . Production of sesterterpene ophiobolin by a bifunctional terpene synthase in Escherichia coli. Appl Microbiol Biotechnol. 2019; 103(21-22):8785-8797. DOI: 10.1007/s00253-019-10103-x. View