» Articles » PMID: 32382033

Reaction Mechanism and Kinetics for CO Reduction on Nickel Single Atom Catalysts from Quantum Mechanics

Overview
Journal Nat Commun
Specialty Biology
Date 2020 May 9
PMID 32382033
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Experiments have shown that graphene-supported Ni-single atom catalysts (Ni-SACs) provide a promising strategy for the electrochemical reduction of CO to CO, but the nature of the Ni sites (Ni-NC, Ni-NC, Ni-N) in Ni-SACs has not been determined experimentally. Here, we apply the recently developed grand canonical potential kinetics (GCP-K) formulation of quantum mechanics to predict the kinetics as a function of applied potential (U) to determine faradic efficiency, turn over frequency, and Tafel slope for CO and H production for all three sites. We predict an onset potential (at 10 mA cm) U = -0.84 V (vs. RHE) for Ni-NC site and U = -0.92 V for Ni-NC site in agreement with experiments, and U = -1.03 V for Ni-N. We predict that the highest current is for Ni-N, leading to 700 mA cm at U = -1.12 V. To help determine the actual sites in the experiments, we predict the XPS binding energy shift and CO vibrational frequency for each site.

Citing Articles

Hydrogen radical-boosted electrocatalytic CO reduction using Ni-partnered heteroatomic pairs.

Yao Z, Cheng H, Xu Y, Zhan X, Hong S, Tan X Nat Commun. 2024; 15(1):9881.

PMID: 39543091 PMC: 11564623. DOI: 10.1038/s41467-024-53529-2.


Toward High-Performance Electrochemical Ammonia Synthesis by Circumventing the Surface H-Mediated N Reduction.

Chen Z, Wang T JACS Au. 2024; 4(10):4023-4031.

PMID: 39483217 PMC: 11522903. DOI: 10.1021/jacsau.4c00741.


Supported Cu/Ni Bimetallic Cluster Electrocatalysts Boost CO Reduction.

Wang D, Wang J, Wang Z, Zhang N, Zeng J, Zhong H Precis Chem. 2024; 2(3):96-102.

PMID: 39474031 PMC: 11504631. DOI: 10.1021/prechem.3c00101.


Tandem Electroreduction of Nitrate to Ammonia Using a Cobalt-Copper Mixed Single-Atom/Cluster Catalyst with Synergistic Effects.

Suh J, Choi H, Kong Y, Oh J Adv Sci (Weinh). 2024; 11(42):e2407250.

PMID: 39297330 PMC: 11558078. DOI: 10.1002/advs.202407250.


Disentangling heterogeneous thermocatalytic formic acid dehydrogenation from an electrochemical perspective.

Qin X, Li J, Jiang T, Ma X, Jiang K, Yang B Nat Commun. 2024; 15(1):7509.

PMID: 39209883 PMC: 11362458. DOI: 10.1038/s41467-024-51926-1.


References
1.
Lin W, Stocker K, Schatz G . Mechanisms of Hydrogen-Assisted CO Reduction on Nickel. J Am Chem Soc. 2017; 139(13):4663-4666. DOI: 10.1021/jacs.7b01538. View

2.
Kresse , Hafner . Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter. 1994; 49(20):14251-14269. DOI: 10.1103/physrevb.49.14251. View

3.
Cheng T, Xiao H, Goddard 3rd W . Reaction Mechanisms for the Electrochemical Reduction of CO to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water. J Am Chem Soc. 2016; 138(42):13802-13805. DOI: 10.1021/jacs.6b08534. View

4.
Su P, Iwase K, Nakanishi S, Hashimoto K, Kamiya K . Nickel-Nitrogen-Modified Graphene: An Efficient Electrocatalyst for the Reduction of Carbon Dioxide to Carbon Monoxide. Small. 2016; 12(44):6083-6089. DOI: 10.1002/smll.201602158. View

5.
Kresse , Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter. 1996; 54(16):11169-11186. DOI: 10.1103/physrevb.54.11169. View