» Articles » PMID: 32321824

Host Cathelicidin Exacerbates Group B Urinary Tract Infection

Overview
Journal mSphere
Date 2020 Apr 24
PMID 32321824
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Group B (GBS) causes frequent urinary tract infection (UTI) in susceptible populations, including individuals with type 2 diabetes and pregnant women; however, specific host factors responsible for increased GBS susceptibility in these populations are not well characterized. Here, we investigate cathelicidin, a cationic antimicrobial peptide, known to be critical for defense during UTI with uropathogenic (UPEC). We observed a loss of antimicrobial activity of human and mouse cathelicidins against GBS and UPEC in synthetic urine and no evidence for increased cathelicidin resistance in GBS urinary isolates. Furthermore, we found that GBS degrades cathelicidin in a protease-dependent manner. Surprisingly, in a UTI model, cathelicidin-deficient () mice showed decreased GBS burdens and mast cell recruitment in the bladder compared to levels in wild-type (WT) mice. Pharmacologic inhibition of mast cells reduced GBS burdens and histamine release in WT but not mice. Streptozotocin-induced diabetic mice had increased bladder cathelicidin production and mast cell recruitment at 24 h postinfection with GBS compared to levels in nondiabetic controls. We propose that cathelicidin is an important immune regulator but ineffective antimicrobial peptide against GBS in urine. Combined, our findings may in part explain the increased frequency of GBS UTI in diabetic and pregnant individuals. Certain populations such as diabetic individuals are at increased risk for developing urinary tract infections (UTI), although the underlying reasons for this susceptibility are not fully known. Additionally, diabetics are more likely to become infected with certain types of bacteria, such as group B (GBS). In this study, we find that an antimicrobial peptide called cathelicidin, which is thought to protect the bladder from infection, is ineffective in controlling GBS and alters the type of immune cells that migrate to the bladder during infection. Using a mouse model of diabetes, we observe that diabetic mice are more susceptible to GBS infection even though they also have more infiltrating immune cells and increased production of cathelicidin. Taken together, our findings identify this antimicrobial peptide as a potential contributor to increased susceptibility of diabetic individuals to GBS UTI.

Citing Articles

Virulence and pathogenicity of group B : Virulence factors and their roles in perinatal infection.

Megli C, Carlin S, Giacobe E, Hillebrand G, Hooven T Virulence. 2025; 16(1):2451173.

PMID: 39844743 PMC: 11758947. DOI: 10.1080/21505594.2025.2451173.


Cathelicidin in Urinary Tract Diseases: Diagnostic, Prognostic and Therapeutic Potential of an Evolutionary Conserved Antimicrobial Protein.

Soric Hosman I, Cvitkovic Roic A, Vukovic Brinar I, Gulin T, Coric M, Rogic D Medicina (Kaunas). 2025; 60(12.

PMID: 39768895 PMC: 11728125. DOI: 10.3390/medicina60122015.


Tamm-Horsfall protein augments neutrophil NETosis during urinary tract infection.

Mercado-Evans V, Branthoover H, Chew C, Serchejian C, Saltzman A, Mejia M JCI Insight. 2024; 10(1.

PMID: 39589812 PMC: 11721310. DOI: 10.1172/jci.insight.180024.


Distinct maternofetal immune signatures delineate preterm birth onset following urinary tract infection.

Ottinger S, Larson A, Mercado-Evans V, Branthoover H, Zulk J, Serchejian C bioRxiv. 2024; .

PMID: 39484515 PMC: 11527006. DOI: 10.1101/2024.10.22.619711.


Re-framing the importance of Group B as a gut-resident pathobiont.

Ling J, Hryckowian A Infect Immun. 2024; 92(9):e0047823.

PMID: 38436256 PMC: 11392526. DOI: 10.1128/iai.00478-23.


References
1.
Mazade M, Edwards M . Impairment of type III group B Streptococcus-stimulated superoxide production and opsonophagocytosis by neutrophils in diabetes. Mol Genet Metab. 2001; 73(3):259-67. DOI: 10.1006/mgme.2001.3185. View

2.
Oottamasathien S, Jia W, Roundy L, Zhang J, Wang L, Ye X . Physiological relevance of LL-37 induced bladder inflammation and mast cells. J Urol. 2013; 190(4 Suppl):1596-1602. PMC: 3947931. DOI: 10.1016/j.juro.2013.01.002. View

3.
Tandogdu Z, Wagenlehner F . Global epidemiology of urinary tract infections. Curr Opin Infect Dis. 2015; 29(1):73-9. DOI: 10.1097/QCO.0000000000000228. View

4.
Patras K, DeRieux J, Al-Bassam M, Adiletta N, Vrbanac A, Lapek J . Group B Streptococcus Biofilm Regulatory Protein A Contributes to Bacterial Physiology and Innate Immune Resistance. J Infect Dis. 2018; 218(10):1641-1652. PMC: 6173572. DOI: 10.1093/infdis/jiy341. View

5.
Kessous R, Weintraub A, Sergienko R, Lazer T, Press F, Wiznitzer A . Bacteruria with group-B streptococcus: is it a risk factor for adverse pregnancy outcomes?. J Matern Fetal Neonatal Med. 2012; 25(10):1983-6. DOI: 10.3109/14767058.2012.671872. View