» Articles » PMID: 32321347

Repeatability of Parametric Methods for [F]florbetapir Imaging in Alzheimer's Disease and Healthy Controls: A Test-retest Study

Abstract

Accumulation of amyloid beta (Aβ) is one of the pathological hallmarks of Alzheimer's disease (AD), which can be visualized using [F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [F]florbetapir PET scans, including arterial sampling, were acquired ( = 8 AD patient,  = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUV). BP+1, DVR, V and SUVr were compared with corresponding estimates (V or DVR) from the plasma input reversible two tissue compartmental (2T4k_V) model with corresponding TRT values for 90-scan duration. RPM ( = 0.92; slope = 0.91), Logan ( = 0.95; slope = 0.84) and rLogan ( = 0.94; slope = 0.88), and SRTM2 ( = 0.91; slope = 0.83), SA ( = 0.91; slope = 0.88), SUVr ( = 0.84; slope = 1.16) correlated well with their 2T4k_V counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUV (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability.

Citing Articles

Quantitative Brain Amyloid PET.

Jagust W, Mattay V, Krainak D, Wang S, Weidner L, Hofling A J Nucl Med. 2024; 65(5):670-678.

PMID: 38514082 PMC: 11064834. DOI: 10.2967/jnumed.123.265766.


Kinetic analysis of cardiac dynamic F-Florbetapir PET in healthy volunteers and amyloidosis patients: A pilot study.

Wang H, Li B, Wang Z, Chen X, You Z, Ng Y Heliyon. 2024; 10(4):e26021.

PMID: 38375312 PMC: 10875429. DOI: 10.1016/j.heliyon.2024.e26021.


Head-to-head comparison of relative cerebral blood flow derived from dynamic [F]florbetapir and [F]flortaucipir PET in subjects with subjective cognitive decline.

Tuncel H, Visser D, Timmers T, Wolters E, Ossenkoppele R, van der Flier W EJNMMI Res. 2023; 13(1):93.

PMID: 37889456 PMC: 10611685. DOI: 10.1186/s13550-023-01041-x.


NiftyPAD - Novel Python Package for Quantitative Analysis of Dynamic PET Data.

Jiao J, Heeman F, Dixon R, Wimberley C, Lopes Alves I, Gispert J Neuroinformatics. 2023; 21(2):457-468.

PMID: 36622500 PMC: 10085912. DOI: 10.1007/s12021-022-09616-0.


Longitudinal change in ATN biomarkers in cognitively normal individuals.

Ebenau J, Visser D, Kroeze L, van Leeuwenstijn M, Van Harten A, Windhorst A Alzheimers Res Ther. 2022; 14(1):124.

PMID: 36057616 PMC: 9440493. DOI: 10.1186/s13195-022-01069-6.


References
1.
Golla S, Verfaillie S, Boellaard R, Adriaanse S, Zwan M, Schuit R . Quantification of [F]florbetapir: A test-retest tracer kinetic modelling study. J Cereb Blood Flow Metab. 2018; 39(11):2172-2180. PMC: 6826855. DOI: 10.1177/0271678X18783628. View

2.
Hammers A, Allom R, Koepp M, Free S, Myers R, Lemieux L . Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 2003; 19(4):224-47. PMC: 6871794. DOI: 10.1002/hbm.10123. View

3.
Braak H, Braak E . Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991; 82(4):239-59. DOI: 10.1007/BF00308809. View

4.
Ichise M, Toyama H, Innis R, Carson R . Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. 2002; 22(10):1271-81. DOI: 10.1097/01.WCB.0000038000.34930.4E. View

5.
Jack Jr C, Knopman D, Jagust W, Petersen R, Weiner M, Aisen P . Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013; 12(2):207-16. PMC: 3622225. DOI: 10.1016/S1474-4422(12)70291-0. View