» Articles » PMID: 32313237

Enantioselective Photoinduced Cyclodimerization of a Prochiral Anthracene Derivative Adsorbed on Helical Metal Nanostructures

Overview
Journal Nat Chem
Specialty Chemistry
Date 2020 Apr 22
PMID 32313237
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

The generation of molecular chirality in the absence of any molecular chiral inductor is challenging and of fundamental interest for developing a better understanding of homochirality. Here, we show the manipulation of molecular chirality through control of the handedness of helical metal nanostructures (referred to as nanohelices) that are produced by glancing angle deposition onto a substrate that rotates in either a clockwise or counterclockwise direction. A prochiral molecule, 2-anthracenecarboxylic acid, is stereoselectively adsorbed on the metal nanohelices as enantiomorphous anti-head-to-head dimers. The dimers show either Si-Si or Re-Re facial stacking depending on the handedness of the nanohelices, which results in a specific enantiopreference during their photoinduced cyclodimerization: a left-handed nanohelix leads to the formation of (+)-cyclodimers, whereas a right-handed one gives (-)-cyclodimers. Density functional theory calculations, in good agreement with the experimental results, point to the enantioselectivity mainly arising from the selective spatial matching of either Si-Si or Re-Re facial stacking at the helical surface; it may also be influenced by chiroplasmonic effects.

Citing Articles

Enantioselective synthesis of chiroplasmonic helicoidal nanoparticles by nanoconfinement in chiral dielectric shells.

Luan X, Tian Y, Wu F, Cheng L, Tang M, Lv X Nat Commun. 2025; 16(1):2418.

PMID: 40069166 PMC: 11897212. DOI: 10.1038/s41467-025-57624-w.


Plasmonic Chirality Meets Reactivity: Challenges and Opportunities.

Brissaud C, Jain S, Henrotte O, Pouget E, Pauly M, Naldoni A J Phys Chem C Nanomater Interfaces. 2025; 129(7):3361-3373.

PMID: 40008194 PMC: 11849436. DOI: 10.1021/acs.jpcc.4c08454.


Recent Advances in Chiral Gold Nanomaterials: From Synthesis to Applications.

Chen H, Hao C Molecules. 2025; 30(4).

PMID: 40005140 PMC: 11858563. DOI: 10.3390/molecules30040829.


Inducing Efficient and Multiwavelength Circularly Polarized Emission From Perovskite Nanocrystals Using Chiral Metasurfaces.

Fiuza-Maneiro N, Mendoza-Carreno J, Gomez-Grana S, Alonso M, Polavarapu L, Mihi A Adv Mater. 2024; 36(52):e2413967.

PMID: 39544134 PMC: 11681301. DOI: 10.1002/adma.202413967.


Impact of Surface Enhanced Raman Spectroscopy in Catalysis.

Stefancu A, Aizpurua J, Alessandri I, Bald I, Baumberg J, Besteiro L ACS Nano. 2024; 18(43):29337-29379.

PMID: 39401392 PMC: 11526435. DOI: 10.1021/acsnano.4c06192.


References
1.
Baiker A . Crucial aspects in the design of chirally modified noble metal catalysts for asymmetric hydrogenation of activated ketones. Chem Soc Rev. 2015; 44(21):7449-64. DOI: 10.1039/c4cs00462k. View

2.
Vetica F, Chauhan P, Dochain S, Enders D . Asymmetric organocatalytic methods for the synthesis of tetrahydropyrans and their application in total synthesis. Chem Soc Rev. 2017; 46(6):1661-1674. DOI: 10.1039/c6cs00757k. View

3.
Xie J, Zhu S, Zhou Q . Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem Rev. 2010; 111(3):1713-60. DOI: 10.1021/cr100218m. View

4.
Boersma A, Megens R, Feringa B, Roelfes G . DNA-based asymmetric catalysis. Chem Soc Rev. 2010; 39(6):2083-92. DOI: 10.1039/b811349c. View

5.
Omosun T, Hsieh M, Childers W, Das D, Mehta A, Anthony N . Catalytic diversity in self-propagating peptide assemblies. Nat Chem. 2017; 9(8):805-809. DOI: 10.1038/nchem.2738. View