Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort M
Sci Adv. 2024; 10(50):eadq0987.
PMID: 39671497
PMC: 11641109.
DOI: 10.1126/sciadv.adq0987.
Dekker J, Mirny L
Cell. 2024; 187(23):6424-6450.
PMID: 39547207
PMC: 11569382.
DOI: 10.1016/j.cell.2024.10.026.
Conte M, Abraham A, Esposito A, Yang L, Gibcus J, Parsi K
Int J Mol Sci. 2024; 25(18).
PMID: 39337699
PMC: 11432541.
DOI: 10.3390/ijms251810215.
Conte M, Abraham A, Esposito A, Yang L, Gibcus J, Parsi K
bioRxiv. 2024; .
PMID: 39071404
PMC: 11275793.
DOI: 10.1101/2024.07.16.603769.
Salari H, Fourel G, Jost D
Nat Commun. 2024; 15(1):5393.
PMID: 38918438
PMC: 11199603.
DOI: 10.1038/s41467-024-49727-7.
Crumpled polymer with loops recapitulates key features of chromosome organization.
Polovnikov K, Slavov B, Belan S, Imakaev M, Brandao H, Mirny L
Phys Rev X. 2024; 13(4).
PMID: 38774252
PMC: 11108028.
DOI: 10.1103/physrevx.13.041029.
DNA choreography: correlating mobility and organization of DNA across different resolutions from loops to chromosomes.
Pabba M, Meyer J, Celikay K, Schermelleh L, Rohr K, Cardoso M
Histochem Cell Biol. 2024; 162(1-2):109-131.
PMID: 38758428
PMC: 11227476.
DOI: 10.1007/s00418-024-02285-x.
Transcription-induced active forces suppress chromatin motion.
Shin S, Shi G, Cho H, Thirumalai D
Proc Natl Acad Sci U S A. 2024; 121(12):e2307309121.
PMID: 38489381
PMC: 10963020.
DOI: 10.1073/pnas.2307309121.
Chromatin organization and behavior in HRAS-transformed mouse fibroblasts.
Otsuka A, Minami K, Higashi K, Kawaguchi A, Tamura S, Ide S
Chromosoma. 2024; 133(2):135-148.
PMID: 38400910
DOI: 10.1007/s00412-024-00817-x.
3D chromatin interactions involving Drosophila insulators are infrequent but preferential and arise before TADs and transcription.
Messina O, Raynal F, Gurgo J, Fiche J, Pancaldi V, Nollmann M
Nat Commun. 2023; 14(1):6678.
PMID: 37865700
PMC: 10590426.
DOI: 10.1038/s41467-023-42485-y.
Competition between transcription and loop extrusion modulates promoter and enhancer dynamics.
Sexton T, Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E
Res Sq. 2023; .
PMID: 37645793
PMC: 10462181.
DOI: 10.21203/rs.3.rs-3164817/v1.
HP1-driven phase separation recapitulates the thermodynamics and kinetics of heterochromatin condensate formation.
Tortora M, Brennan L, Karpen G, Jost D
Proc Natl Acad Sci U S A. 2023; 120(33):e2211855120.
PMID: 37549295
PMC: 10438847.
DOI: 10.1073/pnas.2211855120.
Biophysical ordering transitions underlie genome 3D re-organization during cricket spermiogenesis.
Orsi G, Tortora M, Horard B, Baas D, Kleman J, Bucevicius J
Nat Commun. 2023; 14(1):4187.
PMID: 37443316
PMC: 10345107.
DOI: 10.1038/s41467-023-39908-1.
Predicting scale-dependent chromatin polymer properties from systematic coarse-graining.
Kadam S, Kumari K, Manivannan V, Dutta S, Mitra M, Padinhateeri R
Nat Commun. 2023; 14(1):4108.
PMID: 37433821
PMC: 10336007.
DOI: 10.1038/s41467-023-39907-2.
Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome.
Bruckner D, Chen H, Barinov L, Zoller B, Gregor T
Science. 2023; 380(6652):1357-1362.
PMID: 37384691
PMC: 10439308.
DOI: 10.1126/science.adf5568.
Mesoscale, long-time mixing of chromosomes and its connection to polymer dynamics.
Bajpai G, Safran S
PLoS Comput Biol. 2023; 19(5):e1011142.
PMID: 37228178
PMC: 10246856.
DOI: 10.1371/journal.pcbi.1011142.
Competition between transcription and loop extrusion modulates promoter and enhancer dynamics.
Platania A, Erb C, Barbieri M, Molcrette B, Grandgirard E, de Kort M
bioRxiv. 2023; .
PMID: 37162887
PMC: 10168261.
DOI: 10.1101/2023.04.25.538222.
Polymer folding through active processes recreates features of genome organization.
Goychuk A, Kannan D, Chakraborty A, Kardar M
Proc Natl Acad Sci U S A. 2023; 120(20):e2221726120.
PMID: 37155885
PMC: 10194017.
DOI: 10.1073/pnas.2221726120.
In diverse conditions, intrinsic chromatin condensates have liquid-like material properties.
Gibson B, Blaukopf C, Lou T, Chen L, Doolittle L, Finkelstein I
Proc Natl Acad Sci U S A. 2023; 120(18):e2218085120.
PMID: 37094140
PMC: 10161002.
DOI: 10.1073/pnas.2218085120.
Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation.
Gonzalez L, Kolbin D, Trahan C, Jeronimo C, Robert F, Oeffinger M
Nat Commun. 2023; 14(1):1135.
PMID: 36854718
PMC: 9975218.
DOI: 10.1038/s41467-023-36391-6.