» Articles » PMID: 32298765

Genome-wide Association Study of Non-alcoholic Fatty Liver and Steatohepatitis in a Histologically Characterised Cohort

Abstract

Background & Aims: Genetic factors associated with non-alcoholic fatty liver disease (NAFLD) remain incompletely understood. To date, most genome-wide association studies (GWASs) have adopted radiologically assessed hepatic triglyceride content as the reference phenotype and so cannot address steatohepatitis or fibrosis. We describe a GWAS encompassing the full spectrum of histologically characterised NAFLD.

Methods: The GWAS involved 1,483 European NAFLD cases and 17,781 genetically matched controls. A replication cohort of 559 NAFLD cases and 945 controls was genotyped to confirm signals showing genome-wide or close to genome-wide significance.

Results: Case-control analysis identified signals showing p values ≤5 × 10 at 4 locations (chromosome [chr] 2 GCKR/C2ORF16; chr4 HSD17B13; chr19 TM6SF2; chr22 PNPLA3) together with 2 other signals with p <1 × 10 (chr1 near LEPR and chr8 near IDO2/TC1). Case-only analysis of quantitative traits showed that the PNPLA3 signal (rs738409) had genome-wide significance for steatosis, fibrosis and NAFLD activity score and a new signal (PYGO1 rs62021874) had close to genome-wide significance for steatosis (p = 8.2 × 10). Subgroup case-control analysis for NASH confirmed the PNPLA3 signal. The chr1 LEPR single nucleotide polymorphism also showed genome-wide significance for this phenotype. Considering the subgroup with advanced fibrosis (≥F3), the signals on chr2, chr19 and chr22 maintained their genome-wide significance. Except for GCKR/C2ORF16, the genome-wide significance signals were replicated.

Conclusions: This study confirms PNPLA3 as a risk factor for the full histological spectrum of NAFLD at genome-wide significance levels, with important contributions from TM6SF2 and HSD17B13. PYGO1 is a novel steatosis modifier, suggesting that Wnt signalling pathways may be relevant in NAFLD pathogenesis.

Lay Summary: Non-alcoholic fatty liver disease is a common disease where excessive fat accumulates in the liver and may result in cirrhosis. To understand who is at risk of developing this disease and suffering liver damage, we undertook a genetic study to compare the genetic profiles of people suffering from fatty liver disease with genetic profiles seen in the general population. We found that particular sequences in 4 different areas of the human genome were seen at different frequencies in the fatty liver disease cases. These sequences may help predict an individual's risk of developing advanced disease. Some genes where these sequences are located may also be good targets for future drug treatments.

Citing Articles

RNA-seq analysis reveals transcriptome changes in livers from knockout mice.

Cheng C, Pedicini L, Alcala C, Deligianni F, Smith J, Murray R Biochem Biophys Rep. 2025; 41:101944.

PMID: 40034259 PMC: 11872658. DOI: 10.1016/j.bbrep.2025.101944.


Therapeutic Targets and Approaches to Manage Inflammation of NAFLD.

Geng W, Liao W, Cao X, Yang Y Biomedicines. 2025; 13(2).

PMID: 40002806 PMC: 11853636. DOI: 10.3390/biomedicines13020393.


Drug-target Mendelian randomisation applied to metabolic dysfunction-associated steatotic liver disease: opportunities and challenges.

Luo S, Zheng M, Wong V, Au Yeung S eGastroenterology. 2025; 2(4):e100114.

PMID: 39944268 PMC: 11770435. DOI: 10.1136/egastro-2024-100114.


Impact of Sexual Dimorphism on Therapy Response in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: From Conventional and Nutritional Approaches to Emerging Therapies.

Dileo E, Saba F, Parasiliti-Caprino M, Rosso C, Bugianesi E Nutrients. 2025; 17(3).

PMID: 39940335 PMC: 11821005. DOI: 10.3390/nu17030477.


Recent advances in MASLD genetics: Insights into disease mechanisms and the next frontiers in clinical application.

Chen V, Brady G Hepatol Commun. 2025; 9(1.

PMID: 39774697 PMC: 11717516. DOI: 10.1097/HC9.0000000000000618.