Atkins K, Garzon-Martinez G, Lloyd A, Doonan J, Lu C
Gigascience. 2025; 14.
PMID: 39937596
PMC: 11816797.
DOI: 10.1093/gigascience/giae123.
Plutenko I, Radchuk V, Mayer S, Keil P, Ortleb S, Wagner S
J Exp Bot. 2024; 76(2):393-410.
PMID: 39383098
PMC: 11714760.
DOI: 10.1093/jxb/erae408.
Makkar J, Flores J, Matich M, Duong T, Thompson S, Du Y
J Invest Dermatol. 2024; .
PMID: 39236901
PMC: 11873809.
DOI: 10.1016/j.jid.2024.08.014.
Zhou L, Zhang H, Bian L, Tian Y, Zhou H
Plant Phenomics. 2024; 6:0205.
PMID: 39077119
PMC: 11283870.
DOI: 10.34133/plantphenomics.0205.
Ouyang Z, Fu X, Zhong Z, Bai R, Cheng Q, Gao G
Plant Methods. 2024; 20(1):110.
PMID: 39044226
PMC: 11267839.
DOI: 10.1186/s13007-024-01238-8.
Genomic co-localization of variation affecting agronomic and human gut microbiome traits in a meta-analysis of diverse sorghum.
Korth N, Yang Q, Van Haute M, Tross M, Peng B, Shrestha N
G3 (Bethesda). 2024; 14(9).
PMID: 38979923
PMC: 11373648.
DOI: 10.1093/g3journal/jkae145.
Deep learning for automated segmentation and counting of hypocotyl and cotyledon regions in mature D. Don. somatic embryo images.
Davidson S, Saggese T, Krajnakova J
Front Plant Sci. 2024; 15:1322920.
PMID: 38495377
PMC: 10940415.
DOI: 10.3389/fpls.2024.1322920.
Sensor-based characterization of construction and demolition waste at high occupancy densities using synthetic training data and deep learning.
Kronenwett F, Maier G, Leiss N, Gruna R, Thome V, Langle T
Waste Manag Res. 2024; 42(9):788-796.
PMID: 38385439
PMC: 11367798.
DOI: 10.1177/0734242X241231410.
Deep Learning Enables Instant and Versatile Estimation of Rice Yield Using Ground-Based RGB Images.
Tanaka Y, Watanabe T, Katsura K, Tsujimoto Y, Takai T, Tanaka T
Plant Phenomics. 2024; 5:0073.
PMID: 38239736
PMC: 10795498.
DOI: 10.34133/plantphenomics.0073.
UTILE-Gen: Automated Image Analysis in Nanoscience Using Synthetic Dataset Generator and Deep Learning.
Colliard-Granero A, Jitsev J, Eikerling M, Malek K, Eslamibidgoli M
ACS Nanosci Au. 2023; 3(5):398-407.
PMID: 37868222
PMC: 10588433.
DOI: 10.1021/acsnanoscienceau.3c00020.
Image-Based High-Throughput Phenotyping in Horticultural Crops.
Abebe A, Kim Y, Kim J, Kim S, Baek J
Plants (Basel). 2023; 12(10).
PMID: 37653978
PMC: 10222289.
DOI: 10.3390/plants12102061.
Deep learning-based high-throughput detection of in vitro germination to assess pollen viability from microscopic images.
Zhang M, Zhao J, Hoshino Y
J Exp Bot. 2023; 74(21):6551-6562.
PMID: 37584205
PMC: 10662222.
DOI: 10.1093/jxb/erad315.
Convolutional neural networks in the qualitative improvement of sweet potato roots.
Clara Goncalves Fernandes A, Ribeiro Valadares N, Henrique Oliveira Rodrigues C, Aguiar Alves R, Lorena Melucio Guedes L, Luiz Mendes Athayde A
Sci Rep. 2023; 13(1):8429.
PMID: 37225712
PMC: 10209203.
DOI: 10.1038/s41598-023-34375-6.
Automatic Image Generation Pipeline for Instance Segmentation of Deformable Linear Objects.
Dirr J, Gebauer D, Yao J, Daub R
Sensors (Basel). 2023; 23(6).
PMID: 36991728
PMC: 10058460.
DOI: 10.3390/s23063013.
Classification of Fluorescently Labelled Maize Kernels Using Convolutional Neural Networks.
Wang Z, Guan B, Tang W, Wu S, Ma X, Niu H
Sensors (Basel). 2023; 23(5).
PMID: 36905044
PMC: 10007198.
DOI: 10.3390/s23052840.
Data management challenges for artificial intelligence in plant and agricultural research.
Williamson H, Brettschneider J, Caccamo M, Davey R, Goble C, Kersey P
F1000Res. 2023; 10:324.
PMID: 36873457
PMC: 9975417.
DOI: 10.12688/f1000research.52204.2.
QTL mapping for seed morphology using the instance segmentation neural network in spp.
Seki K, Toda Y
Front Plant Sci. 2022; 13:949470.
PMID: 36311127
PMC: 9606697.
DOI: 10.3389/fpls.2022.949470.
High-throughput field crop phenotyping: current status and challenges.
Ninomiya S
Breed Sci. 2022; 72(1):3-18.
PMID: 36045897
PMC: 8987842.
DOI: 10.1270/jsbbs.21069.
Improving the efficiency of plant root system phenotyping through digitization and automation.
Teramoto S, Uga Y
Breed Sci. 2022; 72(1):48-55.
PMID: 36045896
PMC: 8987843.
DOI: 10.1270/jsbbs.21053.
Corroded Bolt Identification Using Mask Region-Based Deep Learning Trained on Synthesized Data.
Ta Q, Huynh T, Pham Q, Kim J
Sensors (Basel). 2022; 22(9).
PMID: 35591032
PMC: 9104359.
DOI: 10.3390/s22093340.