» Articles » PMID: 32290213

Glioblastoma: Pathogenesis and Current Status of Chemotherapy and Other Novel Treatments

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2020 Apr 16
PMID 32290213
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Glioblastoma is one of the most common and detrimental forms of solid brain tumor, with over 10,000 new cases reported every year in the United States. Despite aggressive multimodal treatment approaches, the overall survival period is reported to be less than 15 months after diagnosis. A widely used approach for the treatment of glioblastoma is surgical removal of the tumor, followed by radiotherapy and chemotherapy. While there are several drugs available that are approved by the Food and Drug Administration (FDA), significant efforts have been made in recent years to develop new chemotherapeutic agents for the treatment of glioblastoma. This review describes the molecular targets and pathogenesis as well as the current progress in chemotherapeutic development and other novel therapies in the clinical setting for the treatment of glioblastoma.

Citing Articles

Innovative perspectives on glioblastoma: the emerging role of long non-coding RNAs.

Doghish A, Mahmoud A, Abd-Elmawla M, Zaki M, Aborehab N, Hatawsh A Funct Integr Genomics. 2025; 25(1):43.

PMID: 39992471 DOI: 10.1007/s10142-025-01557-6.


Citronellol Induces Apoptosis via Differential Regulation of Caspase-3, NF-κB, and JAK2 Signaling Pathways in Glioblastoma Cell Line.

Malik M, Ali S, Ali A, Alanzi A, Atif M, Alharbi H Food Sci Nutr. 2025; 13(1):e4678.

PMID: 39803280 PMC: 11717069. DOI: 10.1002/fsn3.4678.


Nanostructured lipid carriers for enhanced batimastat delivery across the blood-brain barrier: an in vitro study for glioblastoma treatment.

Horta M, Soares P, Sarmento B, Leite Pereira C, Lima R Drug Deliv Transl Res. 2025; .

PMID: 39760929 DOI: 10.1007/s13346-024-01775-8.


The role of sphingolipid rheostat in the adult-type diffuse glioma pathogenesis.

Karmelic I, Jurilj Sajko M, Sajko T, Rotim K, Fabris D Front Cell Dev Biol. 2024; 12:1466141.

PMID: 39723240 PMC: 11668798. DOI: 10.3389/fcell.2024.1466141.


Regulation of autophagy by non-coding RNAs in human glioblastoma.

Molavand M, Ebrahimnezhade N, Kiani A, Yousefi B, Nazari A, Majidinia M Med Oncol. 2024; 41(11):260.

PMID: 39375229 DOI: 10.1007/s12032-024-02513-3.


References
1.
Stupp R, Taillibert S, Kanner A, Read W, Steinberg D, Lhermitte B . Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial. JAMA. 2017; 318(23):2306-2316. PMC: 5820703. DOI: 10.1001/jama.2017.18718. View

2.
Weller M, Butowski N, Tran D, Recht L, Lim M, Hirte H . Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017; 18(10):1373-1385. DOI: 10.1016/S1470-2045(17)30517-X. View

3.
Krauze A, Mackey M, Rowe L, Chang M, Holdford D, Cooley T . Late toxicity in long-term survivors from a phase 2 study of concurrent radiation therapy, temozolomide and valproic acid for newly diagnosed glioblastoma. Neurooncol Pract. 2018; 5(4):246-250. PMC: 6213944. DOI: 10.1093/nop/npy009. View

4.
Sepulveda-Sanchez J, Vaz M, Balana C, Gil-Gil M, Reynes G, Gallego O . Phase II trial of dacomitinib, a pan-human EGFR tyrosine kinase inhibitor, in recurrent glioblastoma patients with EGFR amplification. Neuro Oncol. 2017; 19(11):1522-1531. PMC: 5737732. DOI: 10.1093/neuonc/nox105. View

5.
Kaley T, Panageas K, Mellinghoff I, Nolan C, Gavrilovic I, DeAngelis L . Phase II trial of an AKT inhibitor (perifosine) for recurrent glioblastoma. J Neurooncol. 2019; 144(2):403-407. PMC: 7493746. DOI: 10.1007/s11060-019-03243-7. View